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It is well known that the expression noise is lessened by natural selection for genes that are
important for cell growth or are sensitive to dosage. In theory, expression noise can also be elevated
by natural selection when noisy gene expression is advantageous. Here we analyze yeast genome-
wide gene expression noise data and show that plasma-membrane transporters show significantly
elevated expression noise after controlling all confounding factors. We propose a model that
explains why and under what conditions elevated expression noise may be beneficial and subject to
positive selection. Our model predicts and the simulation confirms that, under certain conditions,
expression noise also increases the evolvability of gene expression by promoting the fixation of
favorable expression level-altering mutations. Indeed, yeast genes with higher noise show greater
between-strain and between-species divergences in expression, even when all confounding factors
are excluded. Together, our theoretical model and empirical results suggest that, for yeast genes
such as plasma-membrane transporters, elevated expression noise is advantageous, is subject to
positive selection, and is a facilitator of adaptive gene expression evolution.
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Introduction

Gene expression, as other biological processes, is subject to
noise (Schrodinger, 1944), which is defined as the stochastic
variation in the expression level of a gene among isogenic cells
under the same condition. Here and elsewhere in the paper,
expression level refers to the level of the protein product of the
gene, as expression noise is usually measured at the level
of protein. Gene expression noise has been measured in
prokaryotes (Elowitz et al, 2002; Ozbudak et al, 2002;
Rosenfeld et al, 2005), unicellular eukaryotes (Blake et al,
2003; Raser and O’Shea, 2004), and mammalian cells (Ramsey
et al, 2006). These and other studies showed that the level of
expression noise varies substantially among genes, is deter-
mined genetically, and is selectable (Blake et al, 2006;
Newman et al, 2006; Maheshri and O’Shea, 2007; Ansel
et al, 2008). Expression noise has both intrinsic and extrinsic
sources (Orphanides and Reinberg, 2002; Rao et al, 2002;
Blake et al, 2003; Kaern et al, 2005; Raser and O’Shea, 2004,
2005; Bar-Even et al, 2006; Newman et al, 2006; Volfson et al,
2006). Stochastic events in gene expression, including those in
transcription initiation, mRNA degradation, translation initia-

tion, and protein degradation, generate intrinsic noise (Raser
and O’Shea, 2005). Differences between cells, either in local
environment or in the concentration or activity of any factor
influencing gene expression, generate extrinsic noise (Raser
and O’Shea, 2005). We focus on intrinsic noise in this study
because only intrinsic noise is an intrinsic property of a gene.

Gene expression noise is often considered a two-edged
sword. On one hand, the noise could be deleterious because it
ruins cellular homeostasis in metabolism and developmental
programs, affects precise controls of biochemical processes in
cells, and breaks the stoichiometric balances among members
of protein complexes (Fraser et al, 2004; Batada et al, 2006;
Lehner, 2008). Increased gene expression noise has been
reported to result in disease (Cook et al, 1998; Kemkemer et al,
2002; Bahar et al, 2006). Several studies showed direct and
indirect evidence for lessened expression noise of genes that
are important to cell growth or sensitive to dosage (Fraser et al,
2004; Newman et al, 2006; Batada and Hurst, 2007; Lehner,
2008). Furthermore, various molecular mechanisms and
regulatory network structures (e.g. negative feedbacks) are
found to attenuate expression noise (Becskei and Serrano,
2000; Pedraza and van Oudenaarden, 2005). On the other

& 2009 EMBO and Macmillan Publishers Limited Molecular Systems Biology 2009 1

Molecular Systems Biology 5; Article number 299; doi:10.1038/msb.2009.58
Citation: Molecular Systems Biology 5:299
& 2009 EMBO and Macmillan Publishers Limited All rights reserved 1744-4292/09
www.molecularsystemsbiology.com



hand, several benefits of expression noise have been
suggested. In particular, it has been argued that stochastic
noise is essential in cell-fate determination (Colman-Lerner
et al, 2005; Kaern et al, 2005; Losick and Desplan, 2008) and
thus is important in the development of multicellular organ-
isms. In unicellular organisms, it has been shown both
theoretically and experimentally that stochastic switching of
expression level or high expression noise could be beneficial in
the face of fluctuating environments or under acute environ-
mental stresses (Thattai and van Oudenaarden, 2004; Blake
et al, 2006; Acar et al, 2008). It is thus plausible that a certain
fraction of genes in a genome have elevated expression noise
driven by positive selection. Indeed, a study of 43 yeast genes
showed that stress-related genes are noisier than the rest of the
genes (Bar-Even et al, 2006). A subsequent characterization of
expression noise of thousands of yeast genes identified several
Gene Ontology (GO) categories with significantly elevated
noise, compared with the genomic average (Newman et al,
2006). These GO categories include amino-acid biosynthesis,
oxidative phosphorylation, heat shock, and stress response.
Although it is tempting to suggest that the higher-than-average
noise of these genes is a result of positive selection (Newman
et al, 2006; Lopez-Maury et al, 2008; Raj and van Oudenaar-
den, 2008), one cannot exclude the possibility that ‘it is a mere
result of lack of constraint on the variability in expression of
such genes’, as has been previously argued (Bar-Even et al,
2006). The genome-wide analysis (Newman et al, 2006) also
suffered from a lack of statistical correction for multiple testing
when many GOs were evaluated. Hence, it is not clear whether
there are genuinely noisier-than-average GOs.

In this study, we test the hypothesis of positive selection for
elevated gene expression noise by controlling multiple factors
potentially associated with the relaxation of purifying selec-
tion. We identify plasma-membrane transporters as the only
group in yeast that shows significantly greater noise than the
neutral expectation. We propose a model explaining why and
under what conditions high noise may be beneficial. We
further show theoretically and empirically that high noise
facilitates adaptive gene expression evolution.

Results

Plasma-membrane transporters are significantly
noisier than the neutral expectation

Newman et al (2006) measured the expression noise for over
2000 genes of the budding yeast Saccharomyces cerevisiae in
rich (YPD) medium. As they controlled for several extrinsic
factors, their noise estimates can be approximately regarded as
intrinsic noise (Newman et al, 2006). The noise level is
commonly measured by the coefficient of variation (CV),
which is the s.d. of the expression level divided by the mean.
Newman et al (2006) found a genome-wide pattern of lower
CV for genes with higher mean expression (also see Bar-Even
et al (2006)). To control the influence of mean expression level
on noise and allow among-gene comparison of noise levels,
they used a new measure of noise named DM. For a given gene,
DM is the difference of its CV from the median CV of those
genes that have a similar mean expression as the focal gene
(Newman et al, 2006).

As there is good evidence that the expression noise is
lessened by natural selection for genes important for cell
growth (Fraser et al, 2004; Batada and Hurst, 2007; Lehner,
2008), we need to control for the ‘importance’ of a gene when
evaluating whether it is noisier than the expectation. The
importance of a gene in yeast cell growth can be measured by
the reduction in growth rate (i.e. fitness) in YPD upon deletion
of the gene from the genome. Fortunately, such data exist for
virtually every yeast gene (Giaever et al, 2002; Steinmetz et al,
2002). We separate all genes with expression noise data into
21 bins of different importance levels, with the fitness of
the deletion strains being in the ranges of o0.05, 0.05–0.10,
0.10–0.15, y, 0.95–1.00, and41.00, respectively. The last bin
is not empty because the fitness value of a gene-deletion strain
was originally measured relative to the mean of all viable gene-
deletion strains, rather than to the wild-type strain (Steinmetz
et al, 2002). To test whether the noise level of genes belonging
to a given GO category exceeds the expectation, we randomly
draw genes (with replacement) from the genome-wide
expression noise data to form a gene set that has the same
number of genes in each of the 21 bins as the focal GO has. We
repeat this process 20 000 times and calculate the proportion of
times when the mean noise level of the GO is lower than that of
the randomly constructed gene set. If this probability (P-value
in Table I) is lower than 5%, we regard the GO to be
significantly noisier than expected. As we examine numerous
GO categories, we further control for multiple testing using a
5% false discovery rate (Storey and Tibshirani, 2003). That is,
only GOs with a Q-value o0.05 are considered as truly
significant. To ensure that there is sufficient statistical power to
detect elevated noise of a GO, only those GOs with at least 30
genes were examined.

GO categories are organized into three groups: biological
process, cellular component, and molecular function (Ash-
burner et al, 2000). The three groups characterize different
aspects of a gene’s function and are thus examined separately
in our analysis. We found that in terms of biological process, 18
GOs related to metabolism and transport show significantly
higher-than-expected noise (Table I). In terms of cellular
component, five GOs related to organelles (particularly
mitochondrion) have high noise (Table I). In terms of
molecular function, four GOs related to catalytic activity and
transporter activity have high noise (Table I). The high
expression noise of proteins localized to the mitochondrion
(and other low copy-number organelles) was noted before and
was thought to be caused by unequal partitioning of
mitochondria (and other organelles) during mitosis (Newman
et al, 2006). Further evidence for this explanation came from
the experiment showing that the same protein expressed from
the same promoter and locus is noisier when targeted to low
copy-number organelles than when localized to the cytosol
(Newman et al, 2006). Thus, the high noise of mitochondrial
proteins is unlikely the result of positive selection for elevated
noise. Further, the high noise of enzymes is probably due to
their special insensitivity to dosage, rather than positive
selection for high noise, because it is well known that, in a
metabolic pathway, even a considerable change in the
concentration of an enzyme has a minimal effect on the flux
of the pathway (Kacser and Burns, 1981). This phenomenon
arises from the kinetic connection through the shared
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substrates/products of adjacent biochemical reactions such
that the effect of changing the catalytic activity in one reaction
tends to be buffered by the response to this of the other
reactions (Kacser and Burns, 1981). Thus, to be conservative,
we removed all mitochondrial proteins and all enzymes, and
re-tested each GO. This time, we identified plasma membrane
as the only cellular component GO category and transporter
activity as the only molecular function GO category that show
significantly higher-than-expected noise (Table I). No biologi-
cal process GO category is significantly noisier than expected.
Our results are robust to the variation of the number of bins
used (11–26) in controlling the effect of gene importance on
noise (Supplementary Tables S1 and S2).

Haploinsufficient genes are sensitive to expression noise
and should have reduced noise, as has been shown (Cook et al,
1998; Batada and Hurst, 2007; Lehner, 2008). To test whether
the high noise of plasma-membrane proteins and transporters
is simply because they are less likely to be haploinsufficient
than other genes in the genome, we further removed all

haploinsufficient genes (Deutschbauer et al, 2005) from the
genome and re-tested every GO. We found that both ‘plasma
membrane’ and ‘transporter activity’ GOs remain significantly
noisier than expected (Q¼0.0038 and 0.0056, respectively)
and that the Q-values are similar to those obtained without the
control for haploinsufficient genes (Table I). This is probably
due to the paucity of haploinsufficient genes in the yeast
genome (Deutschbauer et al, 2005). For this reason, haploin-
sufficient genes are no longer controlled for in subsequent
analysis unless otherwise noted. Previous direct and indirect
evidence suggested that components of stable protein com-
plexes are also sensitive to dosage and thus have reduced noise
(Fraser et al, 2004; Lehner, 2008). We found that after the
control for gene importance, protein complex members no
longer have lower noise than other proteins (P¼0.76, Mann–
Whitney U test). Thus, there is no need to further control for
protein complex membership in our analysis. Overexpressions
of certain genes are detrimental; these genes could have
reduced expression noise as well (Lehner, 2008). However, we

Table I GO categories with significantly greater-than-expected expression noise after the control for gene importance

GO ID GO term # of genes P-value Q-value

All genes
BP GO0006732 Coenzyme metabolic process 57 o5.00� 10�5 o2.54� 10�3

GO0015980 Energy derivation by oxidation of organic compounds 112 o5.00� 10�5 o2.54� 10�3

GO0044262 Cellular carbohydrate metabolic process 81 o5.00� 10�5 o2.54� 10�3

GO0051186 Co-factor metabolic process 71 o5.00� 10�5 o2.54� 10�3

GO0006811 Ion transport 45 1.00� 10�4 2.54� 10�3

GO0006807 Nitrogen compound metabolic process 116 3.00� 10�4 5.08� 10�3

GO0006812 Cation transport 37 3.00� 10�4 5.08� 10�3

GO0032787 Monocarboxylic acid metabolic process 48 3.50� 10�4 5.47� 10�3

GO0006519 Amino acid and derivative metabolic process 104 4.00� 10�4 5.80� 10�3

GO0009060 Aerobic respiration 32 5.00� 10�4 6.77� 10�3

GO0009117 Nucleotide metabolic process 56 5.50� 10�4 6.98� 10�3

GO0006520 Amino-acid metabolic process 99 6.50� 10�4 7.76� 10�3

GO0009056 Catabolic process 173 7.50� 10�4 8.46� 10�3

GO0016051 Carbohydrate biosynthetic process 32 8.00� 10�4 8.55� 10�3

GO0044248 Cellular catabolic process 168 8.50� 10�4 8.63� 10�3

GO0016310 Phosphorylation 59 2.15� 10�3 2.08� 10�2

GO0008152 Metabolic process 1227 2.55� 10�3 2.35� 10�2

GO0044249 Cellular biosynthetic process 402 4.30� 10�3 3.80� 10�2

GO0044237 Cellular metabolic process 1197 4.60� 10�3 3.82� 10�2

GO0044271 Nitrogen compound biosynthetic process 66 4.70� 10�3 3.82� 10�2

CC GO0005739 Mitochondrion 388 o5.00� 10�5 o4.21� 10�4

GO0005740 Mitochondrial envelope 100 o5.00� 10�5 o4.21� 10�4

GO0005743 Mitochondrial inner membrane 49 o5.00� 10�5 o4.21� 10�4

GO0005759 Mitochondrial matrix 92 o5.00� 10�5 o4.21� 10�4

GO0009277 Chitin- and b-glucan-containing cell wall 36 o5.00� 10�5 o4.21� 10�4

GO0019866 Organelle inner membrane 52 o5.00� 10�5 o4.21� 10�4

GO0005618 Cell wall 36 5.00� 10�5 4.21� 10�4

MF GO0003824 Catalytic activity 794 o5.00� 10�5 o1.05� 10�3

GO0015077 Monovalent inorganic cation transporter activity 33 o5.00� 10�5 o1.05� 10�3

GO0015078 Hydrogen ion transporter activity 32 o5.00� 10�5 o1.05� 10�3

GO0005215 Transporter activity 159 1.00� 10�4 1.05� 10�3

GO0015075 Ion transporter activity 68 5.50� 10�4 4.62� 10�3

GO0008324 Cation transporter activity 61 7.50� 10�4 5.25� 10�3

GO0016829 Lyase activity 35 6.00� 10�3 3.60� 10�2

After excluding
mitochondrial proteins
and enzymes

CC GO0005886 Plasma membrane 56 1.00� 10�4 3.80� 10�3

MF GO0005215 Transporter activity 73 7.00� 10�4 5.60� 10�3

BP, biological process; CC, cellular component; MF, molecular function.
P-values were calculated by the randomization test described in the main text. When none of the 20 000 random samples show greater mean noise than the observed
mean noise of a GO category, we consider o1 random sample to have a greater noise than the observed.
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found no significant correlation between gene expression
noise (DM) and the fitness of gene overexpression strains
(Sopko et al, 2006) (Spearman’s rank correlation r¼0.03,
P¼0.15). Thus, there is no need to consider the potential
selection on noise due to gene overexpression. Taken together,
the high expression noise of plasma-membrane genes and
transporter genes cannot be explained by relaxation of
purifying selection because all known factors that could
potentially lead to the relaxation of purifying selection on
noise have been excluded; positive selection for elevated noise
remains the most plausible explanation of their higher-than-
expected noise.

We suspect that the significant results from ‘plasma
membrane’ and ‘transporter activity’ GOs are because of the
high noise of plasma-membrane transporters. Indeed, plasma-
membrane transporters are significantly noisier than expected
after the control for gene importance and the removal of
enzymes and mitochondrial proteins (P¼3.3�10�6; two-tail
Z-test), whereas plasma-membrane proteins that are non-
transporters (P¼0.77) and transporters that are not localized to
the plasma membrane (P¼0.21) are not significantly different
from the expectation (Figure 1A). A careful examination shows
that the majority of plasma-membrane transporters (79%)
belong to the last bin of gene importance (i.e. fitness of the
gene-deletion strain 41.00) (Figure 1B). For this bin, the
genomic average noise level is DM¼0.87±0.16, only slightly,
although significantly, greater than the mean noise
(�0.10±0.18) of the first bin (i.e. fitness o0.05), suggesting
that the effect of negative selection in reducing the expression
noise of important genes is overall relatively small (Figure 1B).
By contrast, the mean noise of the plasma-membrane
transporters in the last bin is DM¼5.62±1.00, suggesting that
the effect of positive selection in elevating expression noise
can be substantial (Figure 1B). Again, the above comparison is
based on the dataset after the removal of enzymes and
mitochondrial proteins. Figure 1C lists the 20 noisiest plasma-
membrane transporters. These proteins transport a diverse
array of chemicals, such as amino acids, glucose, ions,
thiamine, polyamine, oligopeptides, and nucleotides, across
the cell membrane. They are involved in the uptake of
nutrients and ions, excretion of end products of metabolism
and deleterious substances, and communication between cells
and the environment. We also examined the yeast expression
noise data obtained under the minimal (SD) medium (New-
man et al, 2006) and confirmed that plasma-membrane
transporters is the only group with significantly greater noise
than expected after all the controls (i.e. gene importance,
enzymes, and mitochondrial proteins) (Supplementary Table
S3). We also confirmed that this result is robust to the variation
of the number of bins used (11–26) in controlling the effect of
gene importance on noise (Supplementary Tables S3–S5).

High noise can be beneficial when the mean
expression level is suboptimal

Why would high noise be beneficial to plasma-membrane
transporters? It is likely that the optimal expression level of
each transporter depends on environmental factors such as the
nutrients available to the cell. The underexpression of a

transporter may limit the nutrient uptake rate and hence limit
the cell’s Darwinian fitness. However, overexpression of a
transporter could also be disadvantageous for two reasons.
First, overexpression has a fitness cost due to the waste of
energy in transcription and translation (Wagner, 2005; Stoebel
et al, 2008). Second and more importantly, presence of
unwanted transporters could reduce the metabolic efficiency
and hence the fitness. For example, imagine that two carbon
sources C1 (e.g. maltose) and C2 (e.g. lactose) are both present
in the medium, but C1 is energetically more efficient than C2

for the cell to use. If the total number of carbon source
molecules that the cell can catabolize per unit time is limited, it
would be better for the cell to use C1 rather than C2. Thus, an
overexpression of the transporter for C2 will reduce the
number of carbon source molecules catabolized by the cell
per unit time and thus will be deleterious. Certainly, many
transporter genes are under transcriptional regulation such
that the transporter concentrations differ under different
environments. However, changes of expression by gene
regulation take time and are energetically costly (Perez-Ortin
et al, 2007). More importantly, the cell does not have
regulatory responses to all possible environmental changes.
Thus, high expression noise of transporters allows, at least,
some cells to have high fitness in an unpredictable environ-
ment. Below we show mathematically that, under certain
conditions, genotypes with high expression noise can have
greater Darwinian fitness than those with low noise.

Let us consider two genotypes A and B. The only difference
between them is that A has a higher level of expression noise
than B for gene X. The mean expression level (m) of X is
identical between the two genotypes. The distribution of the
expression noise (e) for gene X is described by probability
density functions gA(e) and gB(e) for the two genotypes,
respectively. Genome-wide expression noise data showed that
e generally follows a normal distribution (Bar-Even et al, 2006;
Newman et al, 2006). Let us assume that a population, having
A and B cells, experiences an environmental change such that
the mean expression level of X becomes suboptimal. Let
f(x)¼f(mþ e) be the fitness of the cell that has an expression
level of X equal to x. So, the fitness of genotype A, or the mean
fitness of A cells, equals FA ¼

R1
�1 fðmþ eÞgAðeÞde. Similarly,

the fitness of genotype B equals FB ¼
R1
�1 fðmþ eÞgBðeÞ de. It

can be shown that (i) when f(x) is a convex function (i.e. the
second derivative of f(x) is positive), FA4FB; (ii) when f(x) is a
concave function, FAoFB; and (iii) when f(x) is linear, FA¼FB

(Figure 2; Supplementary Figure S1; Supplementary informa-
tion 1). As f(x) may not be concave or convex for all possible
values of x, what matters is whether f(x) is concave or convex
for the range of x realized in the majority (e.g. 95% or 99%) of
A and B cells. Note that in our model, the optimal expression
level can be either higher or lower than m (Figure 2). Although
the shape of f(x) is generally unknown, it is reasonable to
assume that, at least, for many genes if not most genes, it is bell
shaped with the optimal expression level in the center (Kacser
and Burns, 1981; Hartl et al, 1985; Bedford and Hartl, 2009). In
such cases, f(x) is concave when x is close to the optimal
expression level, but convex when x is far from the optimal.
Thus, big environmental changes tend to generate conditions
under which high noise is beneficial. Note that although we
compared mean fitness values of cells with two different
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genotypes, there is no involvement of group selection in our
model. When f(x) is convex, in a population fixed with the
wild type, a mutant with a higher level of noise is expected to
increase its frequency in the population because its fitness is
greater than that of the wild type.

To see how large FA–FB is when realistic parameters are used
in our model, we examined a few numerical examples. As the
effective population size of yeast is of the order of 107 (Wagner,
2005), a fitness differential greater than 10�7 can be detected
by natural selection. We found that FA-FB is easily greater

than 10�7. For example, in Figure 2A, we assumed

f ðxÞ ¼ e�ðx�mÞ
2=ð2s2Þ ¼ s

ffiffiffiffiffiffi
2p
p

e�ðx�mÞ
2=ð2s2Þ

s
ffiffiffiffi
2p
p . That is, f(x) is scaled

by s
ffiffiffiffiffiffi
2p
p

from the probability density function of normal

distribution N(m, s), where m and s are the mean and s.d. of

the normal distribution, respectively. We used m¼6.2 ands¼1.

We further assumed that the expression noise in genotypes A

and B follows N(0, 1.2) and N(0, 0.7), respectively, and that the

mean expression levels of the two genotypes are both m¼3.
Given these parameters, we found that FA–FB¼0.0728–

Figure 1 Higher-than-expected expression noise of plasma-membrane transporters in yeast. (A) Plasma-membrane transporters (Pþ Tþ ) are significantly noisier
than the neutral expectation. By contrast, non-transporter plasma-membrane proteins (Pþ T�) and non-plasma-membrane transporters (P�Tþ ) are not noisier than
the expectation. The expectation is computed by the mean DM of all genes in the genome with the same level of gene importance (after the removal of enzymes and
proteins localized to mitochondrion). Error bars represent one standard error. (B) The noise levels of plasma-membrane transporters, in comparison with those of all
genes in the genome (after the removal of enzymes and proteins localized to mitochondrion). Genes are divided into 21 bins based on the fitness of the gene-deletion
yeast strains. The mean and s.d. of the noise level for each bin is shown by an open circle and error bars, respectively. No circle is shown if a bin contains no gene, and no
error bar is shown if a bin contains only one gene. Plasma-membrane transporters are shown by small squares. (C) Twenty noisiest plasma-membrane transporters in
yeast. The expected noise level is computed by the mean DM of all genes in the genome with the same level of gene importance (after the removal of enzymes and
proteins localized to mitochondrion). Functional annotations of the genes are based on Saccharomyces genome database (SGD).
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0.0264¼0.0464, five orders of magnitude greater than 10�7.
Further analysis indicates that a large parameter space allows
FA–FB to be substantially greater than 10�7, and this is true
even for genes with a tiny fitness effect (e.g. o1%) upon
deletion (Supplementary Figure S2). A previous site-directed
mutagenesis study showed that a single point mutation in the
GAL1 promoter of yeast can more than triple the level of
expression noise (measured by the s.d. of the expression level)
(Blake et al, 2006). So, the assumed noise difference between
genotypes A and B here can arise simply by a point mutation.
This and other numerical examples, we tried, suggest that
conditions under which the benefit of high noise is detectable
by natural selection arise easily.

Our model predicts faster adaptive expression
evolution of noisier genes

Under our model described above, it can be shown that, when
the mean expression level of a genotype is lower than the

optimal level and the third derivative of f(x) is positive, or
when the mean expression level of a genotype is higher than
the optimal level and the third derivative of f(x) is negative, a
given amount of change in mean expression level towards the
optimal level will result in a greater fitness increase for the
genotype with a higher level of noise (Figure 3; Supplementary
Figure S3; Supplementary information 1). This is because,
under the above conditions, the same advantageous mutation
increases the mean fitness of the noisier genotype more than
that of the quieter genotype (Figure 3). Consequently, the
strength of positive selection for the same advantageous
mutation that changes the same amount of mean expression
level is stronger in a noisier genotype than in a quieter
genotype. For instance, in the numerical example depicted in
Figure 3, we used fðxÞ ¼ e�ðx�mÞ

2=ð2s2Þ, where m¼11 and s¼2.5.
The expression noise in genotypes A and B follows N(0, 1.2)
and N(0, 0.7), respectively, and the mean expression levels of
the two genotypes are both m¼3.0. The advantageous
mutation shifts the mean expression of both genotypes to
n¼7.1. Under such conditions, the fitness of genotype A

Expression level

F
re

qu
en

cy F
itness

A B

FE

DC

Fitness landscape

Expression distri-
bution of the low-
noise genotype

Expression distri-
bution of the high-
noise genotype

Mean expression 
level and fitness of 
the low-noise 
genotype

Mean expression 
level and fitness of 
the high-noise 
genotype

Figure 2 Fitness landscape affects the relative fitness of high-noise and low-noise genotypes. In each panel, the green curve shows f(x), the fitness of the cell with the
expression level of gene X equal to x. The blue and red curves show the frequency distributions of the expression levels (x) of the high-noise and low-noise genotypes,
respectively. The blue and red dots are the mean fitness of the high-noise and low-noise genotypes, respectively. When f(x) is convex, the mean fitness of the high-noise
genotype is greater than that of the low-noise genotype, no matter whether the optimal expression level is higher (A) or lower (B) than the mean expression levels of the
two genotypes. When f(x) is concave, the fitness of the high-noise genotype is smaller than that of the low-noise genotype, no matter whether the optimal expression
level is higher (C) or lower (D) than the mean expression levels of the two genotypes. When f(x) is linear, the fitness of the high-noise genotype equals that of the
low-noise genotype, no matter whether the optimal expression level is higher (E) or lower (F) than the mean expression levels of the two genotypes.
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increases from 0.0178 to 0.4195 because of the mutation,
whereas the fitness of genotype B increases from 0.0107 to
0.3978 because of the same mutation. Thus, the fitness gain for
genotype A (0.4017) is greater than that (0.3871) for genotype
B. We observed this trend in a large parameter space examined
(Supplementary Figure S4). Here we assumed that the
mutation size (n�m¼4.1) is B3.5 times the noise level of
genotype A and B6 times the noise level of genotype B. This
assumption is realistic, because a previous study on the yeast
GAL1 promoter showed that a single point mutation can
change the mean expression level by more than 10 times the
noise level (Blake et al, 2006).

As the same advantageous mutation can enhance the fitness
of the noisier genotype more than the quieter genotype, we
predict faster adaptive evolutionary changes in mean expres-
sion level for noisier genes than for quieter genes. To see to
what extent the noise level impacts the rate of adaptation, we
conducted a computer simulation. Let us consider a popula-
tion of yeast cells all with genotype A and another population
all with genotype B. The two genotypes have the same mean
expression level that is suboptimal. Genotype A has a higher
expression noise level than genotype B. The two populations
have the same population size, mutation rate, and mutation
spectrum. Mutations are randomly generated with a size that
follows a normal distribution. Here, mutation size refers to the
difference between the mean expression level of the mutant
and that of the wild type. We assume that the level of
expression noise does not change. As shown in Figure 4A,
under the parameters detailed in Methods section, genotype A
adapts its expression level to the optimal level significantly
faster than genotype B (Po10�48, t-test), and the difference in
speed is on average 2.56-fold. Figure 4 also shows the

adaptation process from one simulation replication, in which
the noisier genotype (Figure 4B) adapts to the optimal
expression level in about one-fifth the time required for the
quieter genotype (Figure 4C). Thus, at least under some
conditions, high expression noise leads to a substantially
enhanced rate of adaptation of gene expression level because
noise can facilitate positive selection for advantageous
mutations. Note that although the number of generations
required for adaptation seems very large in Figure 4, the actual
time required can be much shorter if the mutations are larger
or the mutation rate is higher. We found that our simulation
result holds in a broad parameter space when we vary the
mutation rate and the noise ratio of the high-noise and low-
noise genotypes (Supplementary Figure S5).

Above, we considered beneficial mutations. In the case of
deleterious mutations, it can be similarly shown that, under
our model, when the mean expression level of a genotype is
lower than the optimal level and the third derivative of f(x) is
positive, or when the mean expression level of a genotype is
higher than the optimal level and the third derivative of f(x) is
negative, a deleterious mutation that renders the mean
expression level further away from the optimal level will
result in a larger fitness loss for the genotype with a higher
level of noise (Supplementary Figure S3; Supplementary
information 1). In other words, under such conditions,
negative selection against deleterious mutations that affect
the mean expression level will be stronger for noisier
genotypes.

Empirical data show greater expression
divergence of noisier genes

It will be interesting to empirically verify our prediction of
higher rates of adaptive expression evolution in noisy genes
than in quiet genes. As the available expression noise data are
from one strain of Saccharomyces cerevisiae (Newman et al,
2006), it is better to estimate the evolutionary rate of gene
expression using closely related species or even intraspecific
strains such that the noise level may be considered constant in
the evolution of gene expression level. We first compared two
strains of S. cerevisiae, a laboratory strain BY4716 (derived
from s288c) and a wild isolated strain RM11-1a, using whole
genome microarray gene expression data generated under the
same condition (synthetic complete medium at 301C) (Brem
and Kruglyak, 2005). We observed a positive correlation
between gene expression noise and gene expression diver-
gence between the two strains (Spearman’s rank correlation
coefficient r¼0.241, Po10�26) (Figure 5A; Table II). Using
microarray gene expression data from five different condi-
tions, we next measured the divergence of mean expression
level among four closely related species of the Saccharomyces
sensu stricto complex (Tirosh et al, 2006), and found that the
divergence is also positively correlated with expression noise
(r¼0.291, Po10�32; Figure 5B; Table II), as was previously
observed (Lehner, 2008). However, it is not trivial to show that
the correlation reflects the prediction of our model rather than
some other mechanism. Below we examine possible alter-
native mechanisms by calculating partial correlation (Fisher,
1924) and show that although some of them do have a role,
they cannot fully explain the observed correlations.

Figure 3 The same advantageous mutation can generate a greater fitness gain
in high-noise than low-noise genotypes under certain conditions. The green curve
shows f(x), the fitness of the cell with the expression level of gene X equal to x.
The solid blue and red curves show the frequency distributions of the expression
levels (x) of the high-noise and low-noise genotypes, respectively. The dotted
blue and red curves show the frequency distributions of the expression levels (x)
of the high-noise and low-noise genotypes with the advantageous mutation that
shifts the mean expression level toward right. The two blue circles show the mean
fitness value of the high-noise genotype with and without the advantageous
mutation, respectively. The two red circles show the mean fitness value of the
low-noise genotype with and without the advantageous mutations, respectively.
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First, it is possible that the number of mutation sites or the
effect of each mutation (in terms of changing the mean
expression level) varies among genes of different levels of

noise. Indeed, as was previously noted (Landry et al, 2007),
expression evolution, measured by expression variance
among mutation-accumulation lines of yeast, is positively
correlated with expression noise (r¼0.24, Po10�27). As the
effective population size was controlled to be B10 cells in the
mutation-accumulation experiment (Landry et al, 2007), the
majority of non-lethal mutations behave neutrally and thus the
rate of expression evolution of these lines reflect the rate and
size of expression mutation, hereby collectively referred to as
mutational effect. If the difference in mutational effect is the
sole reason for the correlation between gene expression noise
and expression divergence shown in Figure 5, we should not
observe this correlation after the control for the expression
variance in mutation-accumulation lines. However, in fact,
the partial correlation between gene expression noise and
expression divergence remains significantly positive in
both between-strain (r¼0.203, Po10�18; Table II) and
between-species (r¼0.247, Po10�23; Table II) comparisons.

Second, negative selection against expression noise can also
generate a positive correlation between the noise level and the
rate of expression evolution, because important genes tend to
have both low noise (Cook et al, 1998; Batada and Hurst, 2007;
Lehner, 2008) and low rate of expression evolution (Tirosh and
Barkai, 2008). However, after further controlling gene im-
portance, we found the positive correlation between the noise
level and the rate of expression evolution to remain significant
in both between-strain (r¼0.191, Po10�10; Table II) and
between-species (r¼0.223, Po10�11; Table II) comparisons.

Third, the above control of gene importance does not fully
eliminate the among-gene variation in the level of negative
selection against noise. Thus, we further removed mitochon-
drial proteins, enzymes, and haploinsufficient proteins from
our dataset. We found the positive correlation between the
noise level and expression divergence to remain significant in
both between-strain (r¼0.131, Po10�4; Table II) and between-
species (r¼0.216, Po10�8; Table II) comparisons. As shown
earlier, after the control for gene importance, membership in
stable protein complexes no long correlates with expression
noise. We therefore did not further control for complex
membership here. Together, the above results provide empiri-
cal support to the prediction of our model that high noise can
facilitate adaptive gene expression evolution.

Discussion

By analyzing the yeast genome-wide gene expression noise
data, we identified plasma-membrane transporters as the only
group that shows significantly greater-than-expected noise
after the exclusion of multiple factors related to the relaxation
of negative selection against noise. Although this result
suggests that the elevation of the expression noise in plasma-
membrane transporters is driven by positive selection, an
alternative hypothesis is that the high noise is a by-product of
selection for something else rather than the direct target of
selection. One particularly relevant subject here is the
differential use of TATA boxes in the promoters of different
groups of genes (Basehoar et al, 2004). For example, TATA-
containing genes are associated with responses to stress, are
highly regulated, and preferentially utilize SAGA rather than

Figure 4 Computer simulation shows faster adaptive evolution of expression
level for a noisier genotype than a quieter genotype. (A) The noisier genotype
reaches the optimal expression level sooner than the quieter genotype during
evolution. (B) A typical case of expression evolution of a noisy genotype. The
blue curve to the right of the figure is the fitness function f(x). Each vertical line in
the heat map represents the frequency distribution of x in the population in a
given generation, with different colors representing different frequencies of cells
with given x. (C) A typical case of expression evolution of a quiet genotype.
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TFIID when compared with TATA-less genes (Basehoar et al,
2004). Interestingly, TATA-containing genes have significantly
larger expression noise than TATA-less genes (Newman et al,
2006). Hence, the high noise of plasma-membrane transpor-
ters could potentially be a by-product of the use of TATA-
containing promoters, if plasma-membrane transporter genes
require TATA-containing promoters for gene regulation. After
removing enzymes and mitochondrial proteins, our dataset
contains 1088 genes that have the information about gene
importance, expression noise, and the presence/absence of a
TATA box. Although only 13.4% of these 1088 genes contain a
TATA box, the corresponding number is 54.5% among plasma-
membrane transporters (Po10�7, w2 test). Nevertheless, even
among TATA-containing genes, the expression noise is
significantly higher for plasma-membrane transporters than
for the other genes after the control for gene importance,
enzymes, and mitochondrial proteins (Po0.001; two-tail
Mann–Whitney U test). The same is true among TATA-less
genes (Po0.02). Thus, the high noise of plasma-membrane
transporters is not fully attributable to the preferential use of
TATA-containing promoters, supporting direct positive selec-
tion for elevated expression noise of these genes. The result
further suggests that multiple molecular mechanisms are used
to achieve the high expression noise of plasma-membrane
transporters. We note that even if the high noise of plasma-
membrane transporters were fully attributable to the prefer-
ential use of TATA-containing promoters, the hypothesis of
direct selection for high noise could not be rejected, because of

the possibility that the preferential use of TATA-containing
promoters is a by-product of the selection for high noise; it
would then become necessary to differentiate which is the
direct target of selection and which is the by-product.

When controlling for gene importance, we used the data of
fitness reduction by gene deletion measured in laboratory rich
media, which may not resemble closely the natural environ-
ments of yeast. However, the fact that this gene importance
index significantly inversely correlates with the expression
noise level (Lehner, 2008), also measured under the rich
media, suggests that using this gene importance index in
analyzing the rich media noise data is meaningful. Our
subsequent analysis of the noise data from rich and minimal
media showed that despite the large nutritional difference
between the two media, the noise levels under the two media
are highly correlated (r¼0.53, Po10�15), suggesting that the
noise levels measured in lab conditions may be good proxies
for the true values in nature. Moreover, expression noise
data from both the rich and minimal media identified
plasma-membrane transporters as the only group with high-
er-than-expected noise. Thus, it is unlikely that our result is an
artifact due to the use of various data generated from lab
conditions that are different from the natural environments
of yeast.

One could argue that plasma-membrane transporters may
be regarded as special enzymes and thus their high noise may
be related to the dosage-buffering effect that enzymes
generally suffer from (Kacser and Burns, 1981). We compared

Figure 5 Expression divergence is positively correlated with expression noise when the divergence is measured (A) between BY4716 and RM11-1a strains of
Saccharomyces cerevisiae or (B) among four closely related Saccharomyces sensu stricto species. All genes with expression noise and expression divergence data are
equally divided into 10 consecutive bins according to the noise level. The mean noise level and mean expression divergence (± one standard error) for each bin are
indicated by solid circles. The means for plasma-membrane transporters are indicated by open circles.

Table II Correlations between the expression noise level and expression divergence of yeast genes

Factors examineda Divergence between strains Divergence between species

rb P-value rb P-value

Noise, divergence 0.241 1.77� 10�27 0.291 8.56� 10�33

Noise, divergence | mutational effect 0.203 2.24� 10�19 0.247 4.92� 10�24

Noise, divergence | mutational effect, gene importance 0.191 7.12� 10�11 0.223 2.63� 10�12

Noise, divergence | mutational effect, gene importance, mitochondrial
proteins, enzymes, haploinsufficient genes

0.131 5.31� 10�5 0.216 3.12� 10�9

aFactors before | are those being correlated, whereas factors after | are those being controlled for.
bSpearman’s rank correlation coefficient.
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the noise level of enzymes and plasma-membrane transporters
by separating the enzyme genes into 21 bins based on their
fitness effects upon deletion and drawing enzyme genes
randomly according to the importance levels of the plasma-
membrane transporters. Repeating this process 10 000 times,
we found that plasma-membrane transporters are on average
2.92 times nosier than enzymes after the control for gene
importance (P¼0.001, Mann–Whitney U test). Thus, the high
noise of plasma-membrane transporters cannot be explained
by the buffering effect even if the transporters behave as
enzymes, further supporting positive selection as the evolu-
tionary force behind their high noise.

We proposed a simple mathematical model and showed that
a high-noise genotype will have a greater fitness than a low-
noise genotype with the same mean expression, as long as the
fitness function is convex. The key question is whether the
cellular fitness, as a function of the expression level of a
plasma-membrane transporter, has a convex region. To our
knowledge, there has been only one study that empirically
determined the fitness function (Dekel and Alon, 2005). This
study reported the relationship between the fitness of
Escherichia coli cells and the expression level of Lac proteins;
the fitness function seems to be concave in the ranges
examined. However, this result does not preclude the existence
of a convex region in unexamined expression ranges of Lac
proteins, nor does it tell us the fitness functions of other genes.
It is likely that the shape of the fitness function varies
depending on the specific cellular role each gene has. Owing to
the lack of sufficient empirical data on the fitness function, we
decide to examine the theoretical possibilities, especially in the
context of plasma-membrane transporters. A simple theore-
tical model shows the existence of convex regions in the fitness
function (Supplementary information 2 and Supplementary
Figure S6). Although the jury is still out as whether the fitness
function indeed contains a convex region, our theoretical
modeling supports this possibility. As the natural environment
of yeast may change abruptly and frequently and because
plasma-membrane transporters are directly involved in the
interactions between a cell and its biotic and abiotic environ-
ment, conditions under which high expression noise of
plasma-membrane transporters is favored over low noise
may arise relatively easily. By contrast, non-plasma-mem-
brane transporters (e.g. those localized to the nuclear envelop)
and plasma-membrane proteins that are not transporters (e.g.
those attaching the cell wall to the plasma-membrane)
generally do not face relevant environmental changes that
are unpredictable, abrupt, and frequent. It should be noted that
because mitochondrial proteins and enzymes were removed in
our GO analysis, adaptive elevation of noise could not be
tested for genes belonging to these two categories. A previous
study identified genes related to stress to be noisier than
the genomic average (Newman et al, 2006). In our analysis,
the biological process GO category of ‘response to stress’
(GO0006950) was significantly noisier than the genomic
average before the control for multiple testing (P¼0.012), but
not after the control (Q¼0.082) (Supplementary Table S6).
Regardless, although our analysis does not preclude the
possibility that even some individual non-plasma-mem-
brane-transporter genes have elevated noise driven by positive
selection, plasma-membrane transporters are apparently

among those that most frequently face large and unpredictable
environment fluctuations. Hence, our results are biologically
sensible. The strength of positive selection for high noise
depends on how frequently favorable conditions occur and on
the fitness functions of a gene under such conditions. It should
be noted that high noise is advantageous only under
unpredictable environmental changes. Repeated switching
among a fixed set of environments may lead to the
evolutionary emergence of gene regulation, with which low
noise could be beneficial.

Our model of why high noise can be favored over low noise
differs significantly from a previous model that is based on the
bimodal distribution of gene expression (Thattai and van
Oudenaarden, 2004). In the model, the expression level of a
gene in a cell switches between two states. Given that
empirical data show a normal distribution of noise (Bar-Even
et al, 2006; Newman et al, 2006), our model is more realistic
and general. Our model is also more general than another
earlier model in which the fitness function f(x) is assumed to
be either 0 or 1 (Blake et al, 2006).

Our mathematical model further predicts faster adaptive
evolution of gene expression toward the optimum for noisier
genotypes than for quieter genotypes under certain conditions.
Our model, again, is significantly different from previous
models that are based on multiple expression attractors
(Kaneko and Furusawa, 2008). Our prediction is supported
by our observation of higher expression divergence between
yeast strains and between yeast species for genes of higher
noise even when all confounding factors are controlled for. We
note that our result does not rely on the assumption that all or
most gene expression divergence between strains (or species)
is adaptive. The fact that, after all controls, expression noise
explains only several percent of the among-gene variation in
expression divergence, is not inconsistent with the hypothesis
that the majority of expression divergence is neutral (Khaito-
vich et al, 2006).

Taken together, high expression noise is not only selected for
in certain yeast genes under unpredictable environmental
changes, it also facilitates adaptive expression evolution when
a directional environmental change occurs. We expect that all
unicellular organisms that face unpredictable and frequent
environmental changes would show a similar pattern of
elevated expression noise in those genes whose expression
levels are often suboptimal, and it will be interesting to test this
prediction in the future when genome-wide expression noise
data become available for additional species. The power and
versatility of natural selection in seizing and utilizing even
seemingly harmful biological properties such as the stochas-
ticity in gene expression to enhance organismal fitness is a
wonderful tribute to the theory of evolution by means of
natural selection.

Materials and methods

Data analysis

The yeast genome-wide datasets of normalized gene expression noise
level (DM) in rich and minimal media were from the study by Newman
et al (2006). Gene expression data from BY4716 and RM11-1a strains
(Brem and Kruglyak, 2005) were retrieved using GEOquery in
Bioconductor (Gentleman et al, 2004; Sean and Meltzer, 2007).
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Expression divergence was estimated by the log2 ratio of the relative
intensity of hybridization signals in microarray experiments (Brem
and Kruglyak, 2005). Gene expression divergence among four yeast
species was similarly estimated and was directly taken from the study
by Tirosh et al (2006). Gene expression divergence among mutation-
accumulation lines of yeast was measured by the variance of
expression signal across lines and was supplied by Landry et al
(2007). Gene importance was measured by the reduction in fitness
upon gene deletion, and was acquired from earlier studies (Giaever
et al, 2002; Steinmetz et al, 2002). Data on fitness effects of gene
overexpression are obtained from Sopko et al (2006), in which the
growth rates of gene overexpression strains are divided into five levels,
from 1 (no growth) to 5 (normal growth). GoMiner (Zeeberg et al,
2003) was used to retrieve GO (Ashburner et al, 2000) information for
yeast genes. The information about the presence and absence of TATA
boxes in yeast genes was acquired from the study by Basehoar et al
(2004).

Computer simulation

Computer simulation was conducted to examine to what extent the
noise level impacts the rate of adaptive expression evolution, in the
face of mutation, drift, and selection. We considered a population of
yeast cells all with genotype A and another population all with
genotype B. The only difference between the two genotypes is that the
expression noise for gene X is higher in A than in B. We assumed that
the expression level of gene X in individual cells of the two populations
follows the normal distribution N(m, s1) and N(m, s2), respectively.
The two populations have the same population size L, mutation rate
m, and mutation size distribution. Here, mutation size refers to the
difference between the mean expression level of the mutant and that of
the wild type. Mutations were randomly generated with a size that
follows the normal distribution N(0, s0). We assumed that the
expression noise level does not change. The fitness function f(x) used
was bell shaped (see Figure 4B and C): fðxÞ ¼ aþ 1�a

fðbÞfðxÞ, where the

normal probability density function fðxÞ equals e�ðx�bÞ2=ð2c2 Þ

c
ffiffiffiffi
2p
p , where a is

a fitness scaling factor and b the optimal expression level. We used the
following parameters in our simulation: L¼1000, a¼0.1, b¼6, c¼0.4,
m ¼10�4, m¼4, s1¼0.6, s2¼0.3, s0¼0.1. We started the simulation by
generating a population of L haploid cells. We then generated
mutations in each cell. The relative frequency of each allele in the
next generation was determined by its relative fitness in the population
as well as genetic drift. When the mean expression level of the
population reached within one s.d. from the optimal expression level,
we considered the adaptive evolution to be successful and recorded the
number of generations used. If after 104 generations the mean
expression level of the population still had not reached the above
cutoff, we stopped the simulation and recorded the time used as 104

generations. We conducted 200 simulation replications for each of the
two populations.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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