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A B S T R A C T

As a multicellular organism, rice flourishes relying on gene expression diversity among cells of various

functions. However, cellular-resolution transcriptome features are yet to be fully recognized, let alone cell-

specific transcriptional responses to environmental stimuli. In this study, we apply single-cell RNA

sequencing to both shoot and root of rice seedlings growing in Kimura B nutrient solution or exposed to

various abiotic stresses and characterize transcriptomes for a total of 237,431 individual cells. We identify

15 and nine cell types in the leaf and root, respectively, and observe that common transcriptome features

are often shared between leaves and roots in the same tissue layer, except for endodermis or epidermis.

Abiotic stress stimuli alter gene expression largely in a cell type-specific manner, but for a given cell type,

different stresses often trigger transcriptional regulation of roughly the same set of genes. Besides, we

detect proportional changes in cell populations in response to abiotic stress and investigate the underlying

molecular mechanisms through single-cell reconstruction of the developmental trajectory. Collectively, our

study represents a benchmark-setting data resource of single-cell transcriptome atlas for rice seedlings

and an illustration of exploiting such resources to drive discoveries in plant biology.

Copyright © 2021, The Authors. Institute of Genetics and Developmental Biology, Chinese Academy of

Sciences, and Genetics Society of China. Published by Elsevier Limited and Science Press. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

A plant is composed of cells of various types, which function as a

whole to secure successful vegetative growth. Since these cells carry

mostly identical genetic information, the variation in functionality is

created from the programmed regulation of transcriptional activities

along the path of cell differentiation. Understanding heterogeneity in

single-cell transcriptomes, therefore, will offer unique insights into

plant physiology and development. However, such heterogeneity is

often undetectable by the traditional bulk RNA sequencing (RNA-

seq) analyses because the specific gene expression of a cell can be

obscured by the transcriptomes of other cells.

Individual plant cells or cell types have been isolated with glass

microcapillaries (Lieckfeldt et al., 2008; Han et al., 2017), laser

microdissection (Jiao et al., 2009; Frank and Scanlon, 2015), ribo-

some tagging followed by translating ribosome affinity purification

(Mustroph et al., 2009; Jiao and Meyerowitz, 2010), and
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fluorescence-activated cell sorting of reporter-expressed pro-

toplasts (Birnbaum et al., 2003; Dinneny et al., 2008; Efroni et al.,

2015). Combined with high-throughput transcriptome profiling ap-

proaches such as microarray and RNA-seq, these approaches have

obtained promising results, such as the identification of sequence

motifs for cell type-specific promoters (Jiao et al., 2009) and the

detection of widespread heterogeneous and monoallelic gene

expression (Han et al., 2017). However, the application of such ap-

proaches is generally limited to cells with prior knowledge of precise

location in tissues or cell type-specific promoters.

The past decade has witnessed the development and application

of single-cell RNA sequencing (scRNA-seq) techniques, which can

characterize the transcriptome profiles of individual cells. Among a

variety of scRNA-seq platforms, 10x Genomics encapsulates cells

into individual “gel bead-in emulsion (GEM)” droplets using a

microfluidic device, and therefore, the transcriptomes of cells of

various functions can be sequenced in parallel (Zheng et al., 2017);

the identities of individual cells can be revealed with following-up

computational analyses (Efroni et al., 2015; Stuart et al., 2019).

scRNA-seq has been mostly applied to animal tissues, albeit a fast-

growing number of applications to plants were implemented since

2019. Early plant studies have been focused on the Arabidopsis root
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(Denyer et al., 2019; Jean-Baptiste et al., 2019; Ryu et al., 2019;

Shulse et al., 2019; Turco et al., 2019; Zhang et al., 2019; Rich-Griffin

et al., 2020; Wendrich et al., 2020). In general, the application of

scRNA-seq remains limited to only a few plant species, presumably

due to the technical obstacles caused by the difficulty in protoplast

isolation and the limited prior knowledge on cell identity and devel-

opmental biology.

Rice (Oryza sativa) not only provides the staple food for more than

half of the world’s population but is also a monocotyledonous model

plant. It is well known that the fibrous root system of rice is developed

from root meristematic cells, which can undergo cell division to self-

renew or differentiate into specialized tissues (Rebouillat et al., 2009;

Zeng et al., 2016). From the outermost to the innermost layers, the rice

root is mainly composed of epidermal, cortical and endodermal, and

vascular cells, which are differentiated from their respective initial cells.

Some epidermal cells are further specialized into root hairs in the zone

of maturation, facilitating water and nutrient absorbance. Procambial

cells, which are differentiated from vascular initial cells, can further

develop into the vascular system, consisting of xylem and phloem.

Rice leaves are developed from the shoot meristematic cell and are

mainly composed of epidermal, mesophyll, and vascular cells, which

are presumably developed from their respective initial cells (Zeng et al.,

2016). The mesophyll is a chlorophyll-containing parenchymal (thin-

walled) cell type specialized for photosynthesis. Although mesophyll

cells are further differentiated into palisade and spongy parenchyma in

dicotyledonous leaves, the morphologic distinction is not apparent in

monocotyledons, including rice (Chonan, 1978). Another parenchymal

cell type is the large parenchymal cell, which barely has chloroplasts,

but participates in the formation of bundle sheathdthe parenchymal

cell layer packed around the vascular bundledand the connection

between the abaxial vascular bundle and the adaxial side (Zeng et al.,

2016; Zhou et al., 2017).

In spite of the extensive knowledge that has been gained for rice

development, the transcription map of the plant body remains to be

precisely drawn at cellular resolution, and the dynamic traveling

waves of gene expression over the course of development are yet to

be fully characterized. For example, although the majority of meso-

phyll cells are plausibly differentiated from mesophyll initial cells,

some mesophyll cells have been reported as differentiated from

vascular initial cells (Zeng et al., 2016); it remains to be investigated if

these mesophyll cells would preserve some transcriptome features

of their developmental origin. It is also unknown how abiotic stresses

can alter gene expression and rice development at cellular resolution.

We reason that these questions will be answered, at least to some

extent, with the application of scRNA-seq.

In this study, we first evaluated the applicability of scRNA-seq to

rice seedlings, using Arabidopsis root cells as a spike-in control. We

then identified major rice cell types using scRNA data obtained from

roots or leaves based on the estimation of a weighted marker-based

index of cell identity (MICI) for each cell and the spatial patterns of

cell-specific genes in the in situ hybridization assays. Implementing

scRNA-seq to rice whole seedlings, we further explored the tran-

scriptional and developmental activities in response to three abiotic

stresses and validated some conclusions with additional small-scale

experiments. Our study showcases the power of applying scRNA-

seq to rice and paves the way for the construction of the plant cell

atlas (Rhee et al., 2019).

Results

Quality controls for the application of scRNA-seq to rice

seedlings

Protoplasting and encapsulating, two critical steps of plant

scRNA-seq library preparation, have been successfully applied to
2

roots of the dicotyledonous model plant Arabidopsis thaliana (Denyer

et al., 2019; Jean-Baptiste et al., 2019; Ryu et al., 2019; Shulse et al.,

2019; Turco et al., 2019; Zhang et al., 2019; Wendrich et al., 2020). To

evaluate if a similar experimental strategy can be extended to the

monocotyledonous model plant Oryza sativa, we hydroponically

grew a japonica rice cultivar (Nipponbare) in Kimura B nutrient so-

lution for two weeks and harvested both the proximal shoots (~8 cm

in length above the root-shoot junction, including mainly leaves and

but probably also the shoot apex surrounded by leaf sheaths) and

tips of the primary and crown roots (~2 cm in length, where lateral

roots were not visible but their primordium might exist; Fig. 1A). By

harvesting only these fast-growing tissues, we increased the pro-

portion of meristematic cells, which would be otherwise too scarce.

We isolated protoplasts through cell wall digestion in an enzyme

solution containing both cellulase and macerozyme.

Our pilot protoplasting experiments revealed that the cell wall of

rice seedlings was more recalcitrant to enzyme digestion than that of

Arabidopsis roots. To increase protoplasting efficiency for rice tis-

sues, we followed a previous protocol that promotes the infiltration of

the enzyme solution into plant tissues by vacuum (Evrard et al., 2012).

Briefly, we applied vacuum for 10 min after adding rice tissues to the

enzyme solution and extended the incubation time from the con-

ventional duration of 1 h for Arabidopsis (Birnbaum et al., 2005) to 2 h.

Presumably, the vacuum and extended enzyme incubation during

protoplasting could lead to overdigestion of the cell wall and

disruption of the cell membrane, releasing RNA of dead cells into cell

suspension. Such background RNA molecules require attention

because they could then be randomly encapsulated into individual

GEM droplets, blurring the expression heterogeneity among indi-

vidual cells. To assess the quality of the isolated protoplasts, we

stained rice protoplasts with trypan blue, a dye that can selectively

color dead protoplasts blue. The fraction of protoplasts maintaining

cell membrane integrity was (66/79¼) 84% (Fig. S1), indicating that

our modified experimental procedure isolated mostly alive

protoplasts.

Seeking to determine if the background RNA released from the

small proportion (1e84% ¼ 16%) of dead protoplasts could obscure

the single-cell transcriptomic feature of alive protoplasts, we mixed

200 roots of one-week-old Arabidopsis seedlingsdas a spike-in

controldwith four rice seedlings, isolated protoplasts from the

mixed sample, and performed scRNA-seq using the 10x Genomics

and Illumina platforms (Fig. 1A). To assess if one of the major fea-

tures, the species origin, of a cell can be inferred from its tran-

scriptome, we mapped sequencing reads to a concatenated

reference of the rice and Arabidopsis genomes (Fig. 1B). Among the

3260 plant cells being sequenced, 2042 and 1049 cells had >90% of

transcripts from the rice and Arabidopsis genomes, respectively

(Fig. 1C; Table S1). They added up to ([2042 þ 1049]/3260¼) 94.8%

of cells. A similar percentage ([3005 þ 851]/4031 ¼ 95.7%) was also

observed in a biological replicate (Fig. S2A). These observations

confirm that despite the presence of some background RNA in the

protoplast suspension, the obtained single-cell transcriptomes can

provide valuable information for the detection of the gene expression

features of individual plant cells.

Protoplast isolation is known to alter some genes’ expression

levels in Arabidopsis (Birnbaum et al., 2003). It is conceivable that the

non-native expression information of such genes could lead to in-

accuracy in the downstream computational analysis that clusters

cells based on transcriptomes. To test if protoplasting also alters the

expression levels of some rice genes, we performed bulk RNA-seq

before and after protoplasting for the Arabidopsis-spiked rice sam-

ples (Fig. 1A), each with two biological replicates. Although the

expression levels in the two biological replicates were highly corre-

lated among rice genes (r > 0.95 in both treatments, Spearman’s

correlation, Fig. S2B and S2C), the expression levels were less



Fig. 1. Quality control experiments for the application of scRNA-seq to rice seedlings. A: A schematic shows the workflow to validate the application of scRNA-seq to rice seedlings.

The tissues from rice seedlings (shown in the salmon boxes) were mixed with the roots of Arabidopsis seedlings (shown in the blue box); the latter served as a spike-in control. Isolated

protoplasts were loaded onto the 10x Genomics platform, where individual protoplasts were encapsulated into “gel beads in emulsion” (GEM) droplets. After cell lysis and reverse

transcription inside individual GEM droplets, they were pooled for the amplification of complementary DNA and the construction of single-cell RNA-seq libraries for Illumina sequencing

(top panel). The accompanied bulk RNA-seq was also performed, with (bottom panel) or without (middle panel) protoplasting, on the mixed tissues from rice and Arabidopsis. Two

biological replicates were conducted for each experiment, and for each replicate, four rice seedlings were mixed with the whole roots of 200 one-week-old Arabidopsis seedlings. B: A

schematic shows the computational workflow to determine the species origin of a cell based on its transcriptome. Sequencing reads from each cell (those sharing the same cell

barcode) were aligned to a concatenated reference genome of rice and Arabidopsis. The species origin of a cell was assigned to a species if >90% of its transcripts were from the

corresponding genome. The cell was otherwise determined as “mixed”, which is possibly caused by the background RNA contamination. Colors of reads and cells indicate the

determined species origin. C: A scatter plot shows the number of detected Arabidopsis transcripts vs. rice transcripts for each cell. Blue and salmon dots represent cells that were

determined as Arabidopsis and rice cells, respectively. Overall, 5.2% cells were determined as “mixed” cells, which are indicated by gray dots. The result of replicate 1 is shown; that of

the other biological replicate is shown in Fig. S2A. D: The expression of seven cell type-specific genes in Arabidopsis roots identified in the previous single-cell transcriptome analysis

(Shulse et al., 2019). The cell type-specific genes are AT5G54370, AT1G12090, AT4G12545, AT1G05260, AT3G54580, AT1G28290, and AT1G12080 from left to right. Single-cell

transcriptome data from the two studies were integrated as described in the main text and Fig. S3 and were plotted onto the same two-dimensional UMAP space. Dots represent

individual cells, colored according to the expression levels of the corresponding cell type-specific genes. The dashed lines were used to circle the putative cell population of the

corresponding cell type on the top panels; they were copied and pasted to the bottom panels. CPM, transcript count of a gene per one million transcripts in the cell.
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correlated between the pre- and post-protoplasting bulk RNA-seq

data (r ¼ 0.62, P < 2.2 � 10�16, Spearman’s correlation, the mean

expression of two replicates was used here and hereafter; Fig. S2D),

indicating that the expression level of some rice genes changed upon

protoplasting.

To identify rice genes differentially expressed on protoplasting,

we compared gene expression levels between the pre- and post-

protoplasting bulk RNA-seq data. Since Arabidopsis roots were

spiked (Fig. 1A), we first tested as a positive control if previously

reported protoplasting-inducing Arabidopsis genes (Birnbaum et al.,

2003) would show increased expression levels on protoplasting in

our data. Indeed, we observed elevated expression levels for these

genes during protoplasting (P < 2.2� 10�16, paired Mann-Whitney U

test, pre- vs. post-protoplasting, N ¼ 342; Fig. S2E), bolstering our

confidence for detecting differentially expressed genes (DEGs) on

protoplasting.

We defined genes exhibiting consistent differential expression on

protoplasting [log2 (fold change) > 3 or < �3] in both biological

replicates as protoplasting-sensitive genes (Fig. S2F and S2G;

Tables S2 and S3). Under this definition, we identified 2231 Arabi-

dopsis and 6344 rice protoplasting-sensitive genes. As expected,

when these genes were excluded, the Spearman’s correlation co-

efficient between the pre- and post-protoplasting RNA-seq data

increased from 0.76 and 0.62 to 0.82 and 0.81, among Arabidopsis

and rice genes, respectively (Fig. S2D, S2H, S2I, S2J), indicating that

the rest 17,126 and 20,538 expressed genes represent a more

protoplasting-robust gene set for Arabidopsis and rice, respectively.

The expression information of the protoplasting-sensitive genes was

consequently excluded from the downstream dimensionality reduc-

tion and cell clustering.

It is worth noting that the 10x Genomics platform captures only a

fraction of protoplasts loaded onto the microfluidic chip (3260/

6000 ¼ 54% in replicate 1 and 4031/6000 ¼ 67% in replicate 2;

Fig. 1A). Therefore, the detected single-cell transcriptomes may not

be competent to fully represent the loaded protoplast population

owing, for example, to protoplast sizeebiased encapsulating.

Considering such potential biases, we combined the transcriptomes

of all captured cells (“pseudobulk” hereafter) and determined if it can

be used to recover the global expression profile obtained from the

postprotoplasting bulk RNA-seq.

In the pseudobulk, we detected the expression of 26,793 and

28,064 out of the 38,869 nontransposable element-related rice genes

in two replicates (68.9% and 72.2%, respectively; Table S1), a per-

centage similar to that in the accompanied postprotoplasting bulk

RNA-seq experiments (58.9% and 63.1%; Table S4). Furthermore,

the gene expression levels in the pseudobulk were highly correlated

with the pre- and post-protoplasting bulk RNA-seq (Spearman’s

correlation coefficient r ¼ 0.81 and 0.92, N ¼ 20,836 and 21,282,

respectively, P < 2.2 � 10�16 for both; Fig. S2K and S2L), confirming

that scRNA-seq captured a representative population of rice seedling

cells.

As we mixed Arabidopsis roots with rice samples for scRNA-seq

(Fig. 1A), in addition to rice cells, we also obtained single-cell tran-

scriptomes for a total of 1900 Arabidopsis root cells (Table S1). We

reasoned that these Arabidopsis data could serve as a positive

control to evaluate if the scRNA-seq data generated from our

modified protoplasting protocol can recapitulate the previously re-

ported single-cell transcriptome atlas for Arabidopsis roots. To this

end, we corrected the technical/batch effects generated during li-

brary preparation (Stuart et al., 2019) by computationally integrating

these 1900 Arabidopsis single-cell transcriptomes with those ob-

tained previously for the 2056 Arabidopsis cells isolated from 1-

week-old roots (Shulse et al., 2019).

Here, we briefly describe the data normalization and integration

pipeline (Fig. S3); detailed parameters can be found in the Materials
4

and Methods section. To control for the variation in the cellular

sequencing depth among cells, we employed “sctransform” to

calculate the normalized gene expression level as the Pearson re-

sidual estimated from the regularized negative binomial regression

(Hafemeister and Satija, 2019). We selected 3000 genes with the

highest among-cell variability in expression within samples, which

will be used for the downstream dimensionality reduction. To ensure

coherent cell clustering among samples, we performed canonical

correlation analyses and captured the most correlated gene

expression features to align cells across samples (Butler et al., 2018;

Stuart et al., 2019). After that, we searched for the mutual nearest

neighbors (Haghverdi et al., 2018) and used them as “anchors” to

further transform the gene expression data sets. We performed

principal component analysis on the transformed data and, based on

the first 100 principal components, projected cells of different sam-

ples onto the same two-dimensional space using uniform manifold

approximation and projection (UMAP) (McInnes et al., 2018).

We found that the Arabidopsis root cells detected in our study

largely overlaid with the previously reported single-cell transcriptome

atlas on the UMAP graph (Fig. 1D). All root cell types identified in the

previous study (Shulse et al., 2019)dincluding columella, cortex,

cortex/hair, endodermis, hair, nonhair, and steledcan be recovered

from our scRNA-seq data, and the expression of the marker genes

that were previously identified being specifically expressed in certain

cell types remained confined in the corresponding cell groups in our

study (Fig. 1D). These observations verified the reliability of our

experimental and computational procedures for single-cell tran-

scriptome analyses.

Cell type assignment using MICI

To obtain a comprehensive single-cell transcriptome atlas for

rice seedlings, we increased the number of rice cells loaded onto

the 10� Genomics microfluidic chips (Fig. 2A). Specifically, we

obtained single-cell transcriptomes for a total of 55,328 rice cells

from four biological replicates (labeled as Seedling-1 to Seedling-4;

Table S1), and for each replicate, the loaded protoplasts were

isolated from a mixture of leaves and root tips of 16 rice seedlings.

To dissect the organ origin (leaf vs. root) of individual cells, we also

separately sequenced the single-cell transcriptomes for proximal

shoots and root tips, each with two biological replicates (Fig. 2A);

among them, samples Leaf-1 and Root-1 were collected from 16

rice seedlings, and samples Leaf-2 and Root-2 were from another

16 rice seedlings.

After normalizing and integrating the scRNA-seq data across

samples as described previously (Fig. S3), we applied the Louvain

methoddan unsupervised algorithm that iteratively extracts cell

communities with the goal of optimizing modularity (Blondel et al.,

2008)dto identify cell clusters. We detected 29 cell clusters; each

contained a variable proportion of cells from 0.6% to 9.9% (Fig. 2B).

Biological replicates largely overlaid with each other on the UMAP

graphs for leaf, root, or seedling samples (Fig. S4AeS4C), verifying

that our scRNA-seq data are reproducible. We then performed a

data-driven analysis to identify specifically expressed genes in each

cell cluster: genes exhibiting the largest expression fold difference

between the cluster being queried and all other clusters (Fig. S5, and

the top five genes for each cluster are provided in Table S5).

We next sought to assign a cell type to each cell cluster based on

the single-cell transcriptomes obtained from the leaf and root sam-

ples (Figs. 2C and 3A). We noticed that most clusters were

composed of cells from both leaves and roots (Fig. S4D), and

therefore, we assigned a leaf and a root cell type to each cell cluster,

except that only a leaf cell type was assigned to Clusters 23 and 24

due to the paucity of root cells (< 5% root cells) in the respective

cluster. We combined cells from two replicates because the cell



Fig. 2. Single-cell transcriptome atlas for the rice leaf. A: A schematic shows the scRNA-seq samples for proximal shoots (labeled as Leaf-1 and Leaf-2), root tips (Root-1 and Root-2),

and mixed tissues (Seedling-1, Seedling-2, Seedling-3, and Seedling-4) of two-week-old rice seedlings. B: Visualization of the 29 cell clusters on the UMAP graph. Data integration and

dimensionality reduction were performed based on the scRNA-seq data for two leaf, two root, and 16 seedling samples; note that in addition to the four seedling samples mentioned in

panel (A), 12 seedling samples that would be collected later in this study (upon three stress treatments) were also included, in an effort to make all UMAP graphs in this study readily

comparable to each other. Dots represent individual cells from two leaf, two root, and four seedling samples in panel (A), colored according to their cell clusters. C: Visualization of the 15

leaf cell types on the UMAP graph; dots represent individual cells from the two leaf samples, colored according to their cell types (left panel). The right panel shows the anatomic

schematic of the rice leaf; cells are colored according to their cell types, and circled cluster numbers are colored according to (B). Preprocambium and mesophyll precursors are labeled

on younger leaves but may also exist in the margin regions of older leaves. Initial cells (Clusters 0, 3, and 8) and unknown cells (Clusters 7 and 25) are not labeled. DeH: The UMAP

visualization and RNA in situ hybridization assays for five cluster(s)-specific genes in the rice leaf. Cells are colored according to the normalized gene expression levels, log (CPM þ 1) on

the UMAP graph. In the in situ hybridization images, the identified cell types (showing on the bottom) are indicated by red triangles; the length of a scale bar represents 50 mm. In panels

(DeG), the MICI-defined nonmesophyll cells are colored light gray to highlight the expression specificity of a gene among mesophyll cells (Clusters 1, 4, 10, 12, and 17e22).
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population proportions were positively correlated between biological

replicates (Pearson’s correlation coefficient r ¼ 0.92 and 0.58,

P ¼ 9.4 � 10�13 and 9.9 � 10�4 for root and leaf samples, respec-

tively; Fig. S4E and S4F). As a negative control, the Pearson’s
5

correlation between the root and leaf samples was confirmed insig-

nificant (r ¼ 0.06, P ¼ 0.75; Fig. S4G).

We intended to develop a computational approach for the cell

type assignment to cell clusters based on the identity of each cell:



Fig. 3. Single-cell transcriptome atlas for the rice root. A: Visualization of the nine root cell types on the UMAP graph; dots represent individual cells from the two root samples, colored

according to their cell types (left panel). Initial cells (cluster 0) and unknown cells (clusters 2, 3, 8, 11e13, 15, and 26) are not labeled. BeE: The UMAP visualization and RNA in situ

hybridization assay for the expression of four cluster(s)-specific genes in the rice root.
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first determining the cell type for each cell and then assigning a cell

type to a cluster being queried according to the majority. Although

the previously defined index of cell identity can estimate for each cell

the propensity of being a cell type based on the reported cell type-

specific transcriptomes (Efroni et al., 2015), the approach is likely not

appropriate for rice because the cell type-specific transcriptomes

remain relatively scarce for rice tissues compared with the wealth of

such data for Arabidopsis roots, with only a few exceptions (Jiao

et al., 2009; Takehisa et al., 2012).

To overcome this hurdle, we developed an index, MICI (see the

Materials and Methods section and Fig. S6 for details), for each cell

to gauge its propensity for being a predefined cell type, which was

the weighted sum of the scaled expression levels of all marker genes

of a cell type. Specifically, we applied logarithm transformation to

reduce the skewness of the raw expression data (in the unit of

transcript count of a gene per one million transcripts in a cell, CPM)

and scaled among all cells to standardize the range of the expression

level across genes. We further determined the weight of each marker

gene from the variance in the cluster-averaged expression level

among cell clusters: the greater variation among clusters, the more

informative a marker for cell type determination.

We compiled from previous studies a list of 40 marker genes for

13 leaf cell types (initial cell, epidermis, guard cell, trichome, meso-

phyll, preprocambium, procambium, fiber, mestome sheath, phloem,

phloem precursor, xylem, and xylem precursor) and 15 marker genes

for five root cell types (initial cell, procambium, phloem, root hair, and
6

xylem precursor) and the lateral root primordium (Table S6). Note that

we simply followed the conventional use of these terms, which are

not necessarily mutually exclusive; for example, the guard cell,

trichome, and root hair are subtypes of epidermal cells, and both the

xylem precursor and phloem precursor are subtypes of procambial

cells (Zeng et al., 2016; Liu et al., 2020). We individually labeled the

expression levels of these marker genes on the UMAP graphs, and

visually, many of them indeed showed some level of cell cluster

specificity in the leaf and/or root samples (Fig. S7).

For each given cell whose transcriptome was obtained, we

calculated a MICI value for each of the predefined cell types afore-

mentioned. We designated the cell type corresponding to the highest

MICI value to the cell being queried, except that the cell type was

considered “undetermined” if none of the MICI values of a cell was

>2 for any cell type. The cell type of the largest cell population of a

cell cluster was assigned to the cell cluster (Fig. S6), and if the largest

cell population was “undetermined”, the cell cluster was assigned as

“unknown”.

Fine assignment of leaf cell types

Implementing MICI, we successfully assigned seven leaf cell

typesdinitial cell, mesophyll, epidermis, mestome sheath, phloem,

procambium, and xylemdto 26 cell clusters (Fig. S8A; Table S7). The

cell type of the remaining three clusters was “unknown” and some

cell types were assigned to numerous cell clusters. For example,
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mesophyll was assigned to Clusters 1, 4, 10, and 17e22 (Fig. S8A;

Table S7). Moreover, mesophyll represented the largest cell popu-

lation of Cluster 12 except for the “undetermined” cells. These 10

clusters made up (5191/9256¼) 56.1% of cells detected in leaf

samples. While mesophyll cells are expected to be reasonably

abundant in the leaf, we speculated that the transcriptomic variation

among these clusters, as reflected by the various coordinates on the

UMAP graphdwhich is capable of preserving the global data

structure (McInnes et al., 2018)dmay bear some genuine develop-

mental differences.

In particular, mesophyll cells gathered into two “superclusters” on

the UMAP graph (Fig. S8A)dSupercluster 1 consisting of Clusters 1

and 17e22, and Supercluster 2 consisting of Clusters 4, 10, and

12dsuggesting the presence of genome-wide transcriptional dif-

ferentiation among mesophyll cells. We first focused on Supercluster

1 since it made up the majority (4461/5191 ¼ 85.9%) of the MICI-

defined mesophyll cells. To dissect the subtypes within the super-

cluster, we performed in situ hybridization on cluster(s)-specific

genes to localize the cells being queried into the cross-section of

leaf tissues. LOC_Os02g41904 (highly expressed in Clusters 1 and

17e19) was more expressed in inner and younger leaves, protected

by the sheaths of older leaves (Fig. 2D, the negative control shown in

Fig. S9), whereas LOC_Os06g05000 (highly expressed in Clusters

21e22) were more expressed in older leaves outside (Fig. 2E), indi-

cating that Clusters 21e22 are mainly composed of more mature

mesophyll cells that are differentiated from mesophyll precursors

represented by the cells in Clusters 1 and 17e19 (Fig. 2C).

We were particularly interested in mesophyll Supercluster 2,

which was spatially closer to procambial cells on the UMAP graph

(Fig. S8A). The in situ hybridization assay revealed that a Clus-

ter10especific gene, LOC_Os05g38264, was specifically localized to

the bilateral region of vascular bundles (Fig. 2F), echoing the previous

report that preprocambial cells transiently exist in this region during

leaf development and will differentiate into mesophyll cells if they do

not ultimately participate in the formation of bundle sheaths (Zeng

et al., 2016). Considering this differentiation lineage, we speculated

that Cluster 10 might represent mesophyll cells differentiated from

preprocambial cells. Similarly, Cluster4 cells were spatially close

to procambial cells on the UMAP graph but also expressed meso-

phyll marker genes that encode the small subunits of RuBisCo

(Tsutsumi et al., 2006), RBCS1 (LOC_Os02g05830), RBCS2

(LOC_Os12g17600), RBCS3 (LOC_Os12g19381), and RBCS4

(LOC_Os12g19470; Fig. S7). We consequently assigned Clusters 4

and 10 as mesophyll cells of preprocambium origin (PO; Fig. 2C).

So far, we have identified the mesophyll of mesophyll-precursor

origin (MO; Clusters 21 and 22) and that of PO (Clusters 4 and 10). To

investigate the common and distinct features for them, we identified

their respective expression specificity compared with other leaf cells

(Fig. S10A). Among the 957 and 536 genes specifically expressed in

the mesophyll of mesophyll precursor and that of PO, respectively,

92 genes were shared, significantly greater than the random

expectation (odds ratio ¼ 6.6, P < 2.2 � 10�16, Fisher’s exact test;

Fig. S10B). The common genes included RBCS4 and Lhcb1.1

(LOC_Os01g52240, encoding light-harvesting chlorophyll a/b-bind-

ing protein b1.1) and were enriched in the gene ontology term

“oxidation reduction” (false discovery rate ¼ 0.02; Fig. S10C).

Meanwhile, a vast majority of these specifically expressed genes

were not shared between the mesophyll cells of the two origins

(Fig. S10B). For example, the known procambium marker gene 4-

COUMARATE:COENZYME A LIGASE 3 (4CL3, LOC_Os02g08100)

(Gui et al., 2011) was broadly expressed in the mesophyll of PO but

not in those of MO (Fig. S10D), indicating that transcription con-

straints imposed by the cell differentiation lineagemay help to explain

the apparent partitioning of mesophylls on the UMAP graph, despite

their common function of photosynthesis.
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The in situ hybridization assay also revealed that the transcripts of

a Cluster 12e and Cluster 20especific gene, LOC_Os01g72900,

were largely localized to the chloroplast-free large parenchymal cells

(including the bundle sheath) instead of the chloroplast containing

the mesophyll cells (Fig. 2G). Visually we noticed that Clusters 12 and

20 were spatially well separated on the UMAP graph (Fig. 2B),

echoing the two differentiation lineages of the large parenchymal

cells, the MO and the PO (Zeng et al., 2016). Following the same logic

as in the developmental origins of mesophyll, we speculated that

Cluster 12 might represent the large parenchymal cells of PO that

participate in the formation of the bundle sheath; in contrast, Cluster

20 might represent the large parenchymal cells of MO that constitute

the ground tissues of leaves as well as bundle sheaths (Fig. 2C). Their

initial assignment asmesophyll cells byMICI (Fig. S8A; Table S7) may

simply reflect the fact that both mesophyll and large parenchyma are

parenchymal.

In addition to mesophyll cells, epidermal cells were also assigned

to a few clusters by MICI (Clusters 9, 23e24, and 26e27; Fig. S8A;

Table S7), which made up (958/9256¼) 10.4% of leaf cells. A

computationally identified candidate marker gene for Cluster 24,

LOC_Os10g06000, exhibited specific expression in the abaxial side

of vascular bundles in the in situ hybridization assay (Fig. 2H), which

helped us assign the fiber cell (a type of sclerenchyma) to Cluster 24

(Fig. 2C). These cells were initially assigned to the epidermis by MICI,

probably because of some common transcriptomic features shared

by the outermost few layers of cells in the leaf.

Initial cells were assigned to three clusters by MICI (Clusters 0, 3,

and 8; Fig. S8A; Table S7). We manually curated Cluster 3 to putative

vascular initial cells according to their specific expression of

WUSCHEL-LIKE HOMEOBOX 4 (WOX4, LOC_Os04g55590; Fig. S7),

which is known to be expressed in the precursors of vascular bundles

(Zeng et al., 2016). Considering that Cluster 0 was spatially closer to

mesophyll precursors on the UMAP graph and Cluster 8 was closer

to epidermal cells, we assigned them as putative mesophyll and

epidermal initial cells, respectively (Fig. 2C).

Furthermore, although Cluster 2 was assigned as “unknown” by

MICI, 14.5% of its cells expressed FILAMENTOUS FLOWER (FIL,

LOC_Os02g42950; Fig. S7), a known marker gene for the developing

phloem in young shoots (Liu et al., 2007). Consistently, Cluster 2 was

localized close to phloem and procambium on the UMAP graph

(Fig. S8A), suggesting that it is composed of preprocambial cells to

be developed into the phloem. More broadly, 10.9% of Cluster

2 cells expressed CYCLIN-DEPENDENT KINASE B2; 1 (CDKB2; 1,

LOC_Os08g40170), a known marker gene for the shoot apical mer-

istem and leaf primordia (Umeda et al., 1999), and 25.4% expressed

the procambium marker 4CL3 (Fig. S7). Taken together, we specu-

lated that Cluster 2 most likely represented preprocambial cells

(Fig. 2C).

Procambial cells were assigned to Clusters 11, 13e15, and 25 by

MICI (Figure S8A; Table S7), which made up (1005/9256¼) 10.9% of

leaf cells. Because Cluster 25 was specialized at the transcriptome

level, as reflected by its spatial separation from the other four clusters

on the UMAP graph (Fig. 2B), and contained the smallest fraction of

procambial cells among these five clusters (Table S7), we conser-

vatively curated the cell type of Cluster 25 to “unknown.” Ultimately,

cell types were assigned to 27 of the 29 cell clusters in the leaf

(Fig. 2C).

Fine assignment of root cell types

Using MICI, we only assigned three root cell typesdphloem,

procambial, and endodermis-cortical initial celldto six clusters

(Figure S8B; Table S8). The cell types of most cell clusters (21/27)

were “unknown,” reflecting the scarcity of marker genes in the rice

root when we initiated this study. To identify additional root cell types,
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we performed in situ hybridization assays on the computationally

identified cluster-specific genes to localize the cells being queried

into the cross-section of the root.

Our in situ hybridization assay localized the transcripts of

LOC_Os02g41904, a gene specifically expressed in Clusters 17, 18,

and 19, to the cortex (Fig. 3B); as a result, we assigned cortical cells to

these clusters (Fig. 3A). As we prepared our manuscript, two recent

studies reporteda total of sevenadditionalmarker genes for thecortex

(Liu et al., 2021;Zhanget al., 2021a). Among them,LOC_Os10g40510,

LOC_Os10g40520, and LOC_Os03g04310 showed specific expres-

sion, particularly in Clusters 4, 7, and 20e22 (Fig. S11A), and conse-

quently, we also assigned cortical cells to these clusters (Fig. 3A).

Following a similar logic, the transcripts of a Cluster 28especific

gene, LOC_Os01g73980, were localized to the xylem in our in situ

hybridization assay (Fig. 3C), so the xylem cell was assigned to

Cluster 28 (Fig. 3A). Consistently, a recent study also reported

LOC_Os01g73980 as a root xylem marker gene (Liu et al., 2021),

bolstering our confidence in accurate curation of root xylem cells.

Besides, a Cluster 25especific gene, LOC_Os05g07060, was

expressed in the outermost three layers of cellsdepidermis,

exodermis, and sclerenchymadas shown in the in situ hybridization

image (Fig. 3D), and these cell types were assigned to Cluster 25

accordingly (Fig. 3A). Consistently, Cluster 25especific genes

LOC_Os06g38960 and LOC_Os08g02300 (Fig. S11B) were recently

reported being expressed in the epidermis (Liu et al., 2021) and

sclerenchyma (Zhang et al., 2021a), respectively.

Procambial cells were assigned to Clusters 10, 14, and 16

(Table S8), which made up the largest MICI-detected cell population

in the root (714/1408 ¼ 50.7%). Although procambial cells were

generally expected to be abundant in the root, we speculated that

they should not be homogenous: When additional marker genes

become available, subtypes of cells could be identified. To test this

idea, we performed in situ hybridization assay on a Cluster

16especific gene, LOC_Os08g37300, and found it specifically

expressed in the pericycle (Fig. 3E), the outermost cell layer of the

vascular cylinder. Consistently, another Cluster 16especific gene,

LOC_Os10g38040 (Fig. S11C), was recently reported as expressed

in the pericycle (Zhang et al., 2021a). Taking all information into

consideration, we assigned the pericycle to cluster 16.

In the two recent scRNA-seq papers on the rice root, additional

marker genes were also reported for root cap, root hair, and endo-

dermis (Liu et al., 2021; Zhang et al., 2021a), three cells types that so

far have not been identified in our study. We screened all these

marker genes for clues of cluster-specific expression in our scRNA-

seq data (Fig. S11DeS11F). Among them, six genes reported as the

markers of endodermisdLOC_Os08g03450, LOC_Os01g16890,

LOC_Os03g13170, LOC_Os05g39960, LOC_Os10g06680, and

LOC_Os04g58760dwere unanimously expressed in Cluster 1

(Fig. S11D), so we assigned the endodermis to Cluster 1. Similarly,

based on the expression of LOC_Os07g35860 and LOC_Os0

3g05640 (reported as root hair markers) and LOC_Os03g12290 (re-

ported as a marker of “near root hair” epidermis) in Clusters 9 and 27

(Fig. S11E), we assigned the root hair to these clusters. The five root

cap marker genes reported by Liu et al. did not exhibit cluster-

specific gene expression in our data (Fig. S11F; see also Discus-

sion). Ultimately, cell types were assigned to 19 of the 27 cell clusters

in the root (Fig. 3A).

Common transcriptomic features were shared between leaves

and roots for the same tissue layer, except for endodermal and

epidermal cells

Visually, we noticed that leaf and root cells did not gather into two

groups on the UMAP graph (Fig. S4AeS4C) but were often blended,

suggesting a lack of a global distinction between the leaf and root
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cells at the gene expression level. Indeed, leaf and root cells coex-

isted in most of the 29 cell clusters (Fig. S4D). This observation is not

explainable by potential data overfitting during the integration of

single-cell transcriptomes between the leaf and root samples

(Fig. 2B) because algorithmically, single cells from the leaf and root

samples were both mapped to the two-dimensional UMAP space

defined by the whole seedling sample Seedling 1. Instead, the

blending of leaf and root cells on the UMAP graph indicates that

some leaf cells are transcriptomically more similar to root cells than

to other leaf cells, and vice versa.

To identify the transcriptomically most similar leaf cell type for

each root cell type and the other way round, we estimated the

averaged transcriptome among all cells of a cell type for the leaf or

root samples and calculated the pairwise Spearman’s correlation

coefficients for gene expression levels between each leaf and each

root cell type among 3000 highly variable genes (Fig. 4A and 4B). We

identified several cell types whose leaf and root cells were recipro-

cally most similar at the transcriptome leveldphloem, xylem, and

procambial cells. Besides, leaf mestome sheath and root pericycle

were also reciprocally most similar to each other, echoing that they

are both the outermost cell layer of the vascular cylinder and are both

developed from vascular initial cells (Zeng et al., 2016).

The situation was more complicated for the ground tissue. On the

one hand, the root cortical cells were most similar to mesophyll

precursors and the mesophyll cells differentiated from them (Fig. 4A

and 4B); this observation is not unexpected since mesophyll and

cortical cells are well known as leaf and root parenchyma, respec-

tively. Another somewhat expected observation is that the

endodermis-cortical initial cells were most similar to mesophyll initial

cells, mesophyll precursors, vascular initial cells, and epidermal initial

cells (Fig. 4A and 4B), implying the shared transcriptomic feature of

these fast-proliferating and self-renewing meristematic cells,

regardless of the tissue layer. On the other hand, endodermis, a

single layer of root cells delimiting the cortex from the vascular cyl-

inder, is supposed to be the counterpart of the bundle sheath in the

leaf but was transcriptomically most similar to meristematic cells

(Fig. 4A and 4B), likely implicating its developmental potential in

giving rise to lateral root primordia (Rebouillat et al., 2009).

For the epidermal tissue, the counterpart cells between leaves

and roots were not readily identifiable from the transcriptome, as

reflected by the absence of any >0.6 correlation coefficients

observed for the root or leaf epidermis (Fig. 4B). We surmise that

there are twomutually nonexclusive explanations for the observation.

First, the root epidermal cells identified in the scRNA-seq data

(Cluster 25) were a mixed population of epidermal, exodermal, and

sclerenchyma cells (Fig. 3A and D). Exodermis and sclerenchyma are

ground tissues (Rebouillat et al., 2009), and the blending of them

could have obscured the major transcriptomic features of the

genuine root epidermis. Second, it is also possible that the epidermal

tissue is functionally more variable between leaves and roots than the

ground or vascular tissues because the epidermis is the outermost

layer of the plant body, directly facing the external environment, may

it be air or soil.

The leaf and root cells are usually transcriptomically

distinguishable even if they fall into the same cluster

Despite the overall similarity in gene expression between some

leaf and root cells, we hypothesized that some DEGs would enable

transcriptome-based distinction of leaf and root cells even if they

belong to the same cluster. To test this idea, we calculated for each

cluster the difference in each gene’s expression level between leaf

and root samples, estimated the corresponding P value from the

Mann-Whitney U test among individual cells, and drew volcano plots

for visualization (Fig. 4C and Figs. S12). Many genes appeared to be



Fig. 4. The similarities and differences in transcriptomes between leaf and root cell types. A: The pairwise Spearman’s correlation coefficients for the expression profile between a leaf

cell type and a root cell type. This analysis was performed exclusively based on the single-cell transcriptomes from the two leaf and the two root samples, and the scRNA-seq data from

two replicates of the same organ were combined. To estimate the correlation coefficient between two cell types, we retrieved the data integrationeadjusted expression levels for the

3000 highly variable genes, averaged the gene expression level among all cells of a cell type, and calculated Spearman’s correlation coefficients among the 3000 highly variable genes.

The leaf and root cell types are labeled in green and magenta, respectively. The color and the area of each dot reflect Spearman’s correlation coefficient (r) and |r|, respectively. B: The

transcriptomic similarity between leaf and root cell types. The edges in the middle that connect two cell types represent >0.6 Spearman’s correlation coefficients. The arrows on the

sides represent the known cell lineage of rice development (Zeng et al., 2016). Cell types not identified in our scRNA-seq data are underlined and shown in gray. C: The selection of three

leaf-biased genes and three root-biased genes for each cell cluster based on the single-cell transcriptomes of the leaf and root samples. The results of cluster 7 are shown here as an

example, and those of other clusters are shown in Fig. S12. Each dot on the volcano plot represents a gene. For each gene, its expression ratio between the leaf and root samples is

shown on the x axis, and the corresponding P value from the Mann-Whitney U test is shown on the y axis. Note that the fraction of cells expressing the gene was also considered for

gene selection, but such information is not shown here (see Materials and Methods for details). Selected leaf-biased and root-biased genes are labeled in green and magenta,

respectively. D: The determination of the organ origin (leaf vs. root) for individual cells in the seedling samples. Each dot represents a cell, and its average scaled expression level of the

three selected leaf-biased (root-biased) genes is shown on the x axis (y axis). The minimum values of the indices of leaf and root were set as the origin of the coordinate system. Cells

above, below, and on the y ¼ x (dashed) line are determined as root (magenta), leaf (green), and unknown (gray) cells. The results of Cluster 7 are shown here as an example, and those

of other clusters are shown in Fig. S13. The known leaf and root cells collected from the leaf and root samples are shown as positive controls. E: The correlation between the population

ratio (root/leaf) of determined cells in the seedling samples and that of detected cells in the root and leaf samples, among the 29 cell clusters. Each dot represents one of the 29 cell

clusters, colored according to Fig. 2B. The coefficients of both Pearson’s and Spearman’s correlation are shown on the top (P < 1 � 10�4 in both statistical tests). The straight line shows

the standard major axis estimated from the “lmodel2” function in the lmodel2 package of R. The x and y axes differ by one order of magnitude, likely because a similar number of root

and leaf protoplasts were sequenced in the leaf and root samples regardless of their relative abundance in the seedling samples.
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differentially expressed between leaves and roots, indicating that leaf

and root cells in the same cluster likely retain their respective tran-

scriptomic features.

To distinguish the leaf and root cells within a cell cluster for the

seedling samples, we defined the index of leaf and the index of root

for each cell to gauge the likelihood of a cell being isolated from

leaves or roots, respectively. Specifically, for each cluster, we esti-

mated a leaf-biased expression score for each gene from the scRNA-

seq data of the leaf and root samples, taking both the gene’s average

expression level and the fraction of cells expressing the gene into

consideration (see the Materials and Methods for details). Based on

the biased expression scores, we defined three leaf-biased genes

and three root-biased genes for each cell cluster (Fig. 4C and
9

Figs. S12; Table S9). We calculated the index of leaf (or root) as the

average scaled expression level of the three leaf (or root)-biased

genes, and according to the values of the two indices, we parti-

tioned cells into leaf and root cells for the seedling samples (Fig. 4D

and Figs. S13).

Applying this method to the seedling data, we estimated the or-

gan origin of each cell for each cell cluster (Figs. S12 and S13).

Among cell clusters, the estimated cell population ratio of organ or-

igins (leaf vs. root) was positively correlated with the ratio estimated

from the leaf and root samples (r ¼ 0.76, P ¼ 2 � 10�6, N ¼ 29,

Pearson’s correlation, r ¼ 0.68, P ¼ 5 � 10�5, Spearman’s correla-

tion; Fig. 4E), bolstering our confidence for implementing scRNA-seq

to whole seedlings in the rest of this study.
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Abiotic stress-induced transcriptomic responses often act in a

cell typeespecific manner

After the construction of the single-cell transcriptome atlas of

rice seedlings in the Kimura B nutrient solution, we realized that

scRNA-seq provides an exciting opportunity to address the long-

standing question of potential heterogeneity among cell types in

response to abiotic stresses (Dinneny et al., 2008). To this end, we

adjusted NH4
þ, NaCl, or Fe3þ to various concentrations in a pilot

experiment (Fig. 5A), on the basis of the Kimura B nutrient solution.

We did not observe apparent variation in the plant architecture
Fig. 5. Cell typeespecific gene expression changes on abiotic stresses. A: The two-week-ol

adjusted to the concentration labeled on the top, on the basis of the Kimura B solution, in wh

used for scRNA-seq experiments are labeled in color. Scale bars represent 5 cm. B: UMAP

samples), low nitrogen (LN), high salinity (HS), and iron deficient (ID). Dots represent individua

data from four biologically replicates are combined. C: The morphology of the root hairs on

differentially expressed on the low-nitrogen treatment (red dots) in root hair cells. The scatter p

initial cells were not included in this analysis because of their relatively small numbers of cells,

intersection sizes of upregulated genes among cell types in response to the low-nitrogen stre

(intersection size) of upregulated genes shared by the cell type(s) filled in the matrix. Only the c

are labeled in magenta and green, respectively. The red triangles on the bottom indicate the c

and roots. The UpSet plot was generated using the “upset” function in the UpSetR package of

and G: The independence of DEGs on two abiotic stresses for each cell type. The root hair ce

corresponding P values were estimated from Fisher’s exact tests. The error bars in (G) repre
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except for the high-salinity treatment (Fig. 5A) and therefore decided

to perform single-cell RNA-seq experiments in the most extreme

conditions used in the pilot experiment: The two-week-old rice

seedlings were treated with an NH4
þ-free medium for five days (“low

nitrogen”), with 200 mM additional NaCl for three days (“high

salinity”), or with an Fe3þ-free medium for five days (“iron defi-

ciency”). We isolated protoplasts from the mixed proximal shoots

and root tips from 16 rice seedlings for each biological replicate,

and four biological replicates were performed for each condition.

We obtained transcriptomes for a total of 159,262 cells under these

three treatments (Table S1).
d rice seedlings on gradient abiotic stresses. [NH4
þ], [NaCl], and [Fe3þ] were individually

ich the respective concentrations of these chemicals are shown in cyan. The conditions

visualization of seedling samples in four conditions: control (Ctrl, i.e., the four seedling

l cells, colored according to the growing conditions. For each condition, the scRNA-seq

abiotic stresses. Scale bars represent 100 mm. D: Scatter plot shows genes that are

lots of DEGs in other cell types and on other treatments are shown in Fig. S14. Note that

thereby limited statistical power for the detection of DEGs. E: The UpSet plot shows the

ss. To be specific, the height of the bar on the top of each column reflects the number

olumns with the intersection size ranked top 25 are shown. Cell types of roots and leaves

olumns representing the intersection between the counterpart cell types between leaves

R. The UpSet plots for downregulated DEGs and other conditions are shown in Fig. S16. F

lls were used as an example for the 2 � 2 contingency table (F). The odds ratios and the

sent the 95% confident intervals of the corresponding odds ratios.
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All major cell types defined in the standard Kimura B nutrient

solution were also detected when treated with the three abiotic

stresses (Fig. 5B), suggesting that these abiotic stresses did not

cause fundamental variation in cell type transcriptomic features.

Nevertheless, morphologic changes in some cell types were

observed under the microscope. For example, root hairs were

significantly elongated when rice seedlings were treated with low

nitrogen (Fig. 5C), indicating the presence of gene expression alter-

ation in some cells. To test if such alternation acts in a cell type-

especific manner, we lumped together all cells of the same type from

the four replicates of each condition and identified DEGs from these

single-cell transcriptomes (Tables S10‒S12). Specifically, DEGs

were defined as genes with a >1.5-fold difference in the average

expression level between two conditions, with the corresponding P

value in the Mann-Whitney U test <0.01, and being expressed in at

least 10% of cells in the condition showing the higher average

expression level. DEGs identified in the root hair upon the low-ni-

trogen treatment are shown in Fig. 5D as an example, and those in

the other cell types are shown in Fig. S14. Two cases of differential

gene expression were further validated using in situ hybridization

(Fig. S15).

To determine the level of transcriptional heterogeneity among cell

types in response to abiotic stress, we drew two UpSet plots for each

stress treatmentdone for upregulated and the other for down-

regulated genesdto illustrate the number of shared stress-

responding genes among cell types. We observed that the majority

of transcriptional responses took place in individual cell types (Fig. 5E

and Figs. S16). For example, among the 3383 genes whose

expression was upregulated upon the low-nitrogen stress in at least

one cell type, 76% (2563 genes) were upregulated in only one cell

type (Fig. 5E). These data were consistent with the previous report in

Arabidopsis roots that the expression of 49% of DEGs was only

altered in a single cell type on sucrose removal (Shulse et al., 2019).

These observations together indicate that expression responses on

abiotic stress likely operate in a cell typeespecific manner.

Nevertheless, shared transcriptional responses across cell types

did exist. To identify common transcriptional responses among cell

types, we focused on the intersection sets of genes in the UpSet

plots. We found that some common responses occurred in the

counterpart cells between leaves and roots identified in Fig. 4A and

4B, for example, between the large parenchyma in the leaf and the

cortex in the root and between the mestome sheath in the leaf and

the pericycle in the root (marked with red triangles in Fig. 5E). These

observations indicate that cells of the same tissue layer between

leaves and roots exhibit not only similar transcriptome features but

also common transcriptional regulation in response to environmental

stress.

Transcriptional responses are shared among various abiotic

stresses

We next sought to investigate if cells use the same transcriptional

regulation program to respond to various abiotic stresses. To this

end, we determined if the identities of responding genes are inde-

pendent between two stresses using Fisher’s exact tests. Root hair

was used to exemplify the computational procedure in Fig. 5F: We

counted the number of DEGs in response to the low-nitrogen and

iron-deficiency stresses and their intersection, filled up a 2 � 2 table,

and calculated the odds ratio, the P value, and the confidence in-

tervals. A significantly >1 (P < 0.05) odds ratio indicates that the

same set of genes tend to be used to respond to various stresses,

whereas a significantly < 1 (P < 0.05) odds ratio indicates that

instead, different genes tend to be used.

As shown in Fig. 5F, the expression levels of 251 (or 279) genes

were altered in root hairs in response to low nitrogen (or iron
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deficiency). If the responses have been independent between the

two treatments, we expect two genes to be shared. The observation

of 42 shared genes means a ~20-fold enrichment, indicating that

DEGs in response to low nitrogen also tend to play a role in iron

deficiency. This observation was not a special case, as globally we

observed that the odds ratios were mostly significantly >1 in various

cell types and between any two of the three conditions examined in

this study (Fig. 5G). Looking closer, we noticed that the significant

(P < 0.01, Fisher’s exact test) enrichment in the gene ontology term

“response to stress” (GO:0006950) was not shared across conditions

in the majority of the cell types (except in the large parenchyma and

procambium); in sharp contrast, “translation” (GO:0006412) or

“generation of precursor metabolites and energy” (GO:0006091) was

frequently shared across conditions, indicating that the stress-

induced changes in the fundamental cellular processes are likely

accountable for the common transcriptional responses across

various abiotic stresses. Collectively, these observations imply that

rice cells tend to respond to various abiotic stresses using a common

transcriptional regulation strategy.

The proportion of cell populations changes in response to

environmental stresses

Visually we noticed that rice leaves were pale and yellow (i.e.,

chlorosis) when treated with high salinity, a phenomenon that was not

apparent for the seedlings treated with iron deficiency or low nitrogen

in our experiments (Fig. 6A). The green color of leaves is known to be

caused by chlorophyll, which exists in the chloroplast of mesophyll

cells. We therefore speculate that there are two mutually nonexclu-

sive explanations for the observed chlorosis: reduced proportion of

mesophyll cells and reduced abundance of chlorophyll molecules per

mesophyll cell. We next tested these explanations individually using

the scRNA-seq data.

To test if the cell population has altered in response to stress, we

estimated the cell proportion for each cell type in each sample and

compared it between rice seedlings growing in Kimura B nutrient

solution (as a control) and exposed to the three abiotic stresses

(Fig. S17). The population of mesophyll cells of MO substantially

decreased upon the high-salinity treatment (P¼ 0.03, Mann-Whitney

U test; Fig. 6B) but remained largely unchanged in the iron deficiency

and low nitrogen conditions (P¼ 0.89 and 0.89; respectively, Fig. 6B),

indicating that the chlorosis observed on the high-salinity treatment

is at least partly attributable to the proportional reduction in the

mesophyll cell population.

To test if chlorophyll abundance per mesophyll cell has also

decreasedon the high-salinity treatment,we retrieved from the single-

cell transcriptomes the expression level of CAB2R (LOC_Os01g4

1710), which encodes a major chlorophyll a/b-binding protein that

functions in the light-harvestingcomplex inchloroplasts andcanserve

as a marker gene for mesophyll (Tsutsumi et al., 2006). CAB2R

exhibited a >16-fold reduction in messenger RNA abundance on the

high-salinity treatment (Fig. 6C), but its expression level remained

largely unchanged when treated with iron deficiency or low nitrogen

(fold change ¼ 1.48 or 0.90, respectively). Similar patterns were also

observed for other genes encoding the subunits of the light-harvesting

complex or the RuBisCo complex (Fig. S18), suggesting that the

reduced chlorophyll abundance per mesophyll cell likely also ac-

counts for the observed chlorosis on the high-salinity treatment.

So far, we have shown using the scRNA-seq data a concordant

reduction, on the high-salinity treatment, in both the proportion of

mesophyll cell population and the abundance of chlorophyll-binding

proteins per mesophyll cell. Seeking to validate these observations

with a second experimental approach, we analyzed mesophyll pro-

toplasts isolated from rice leaves using flow cytometry, based on the

red autofluorescence emitted from their chlorophyll (Fig. 6D). The



Fig. 6. Changes in mesophyll cell population and chlorophyll abundance on abiotic stresses. A: The color of the rice leaves on abiotic stresses. The scale bar represents 1 cm. B: The

change in mesophyll cell population on abiotic stresses, detected by scRNA-seq. The proportion of mesophyll cells among all leaf cells is shown in dots for each scRNA-seq sample,

colored according to the respective conditions. The short horizontal line indicates the mean expression level of four replicates. P values are given by the Mann-Whitney U tests. The

changes in other cell populations are shown in Fig. S17. C: The violin plots show the expression of CAB2R in mesophyll cells in the four conditions, detected by scRNA-seq. Each dot

represents an individual cell (four replicates were combined), and the short horizontal line indicates the mean expression level among all cells. The differential expression is significant on

all three conditions (P < 2.2 � 10�16, Mann-Whitney U tests). D: The gate (the same red polygon in both plots) used for the flow cytometry analysis to identify mesophyll cells. In the

density plots, the forward scatters of the detected events are plotted against the red fluorescence intensities. Red (or blue) dots represent a relatively high (or low) density of events

within the cell population. The protoplasts isolated from Arabidopsis roots are used as the negative control. E: Similar to panel B, the change in mesophyll cell population on abiotic

stresses, detected by flow cytometry. F: The median red fluorescence intensity among mesophyll cells identified by flow cytometry in each replicate. P values were given by the Mann-

Whitney U tests (only <0.01 P values are labeled). The short horizontal line indicates the mean expression level among all replicates of each condition. The numbers of replicates in

panels (E) and (F) are 7, 3, 4, and 3 for the four conditions. G: Microscopic images of the cross-section of rice seedlings grown in four environmental conditions. H: Similar to Panel (E),

the fraction of the cell area showing chlorophyll autofluorescence within the total cell area defined in the bright field. I: Similar to Panel (F), the average fluorescence intensity per unit

mesophyll cell area. The numbers of replicates in panels (H) and (I) are 15, 14, 15, and 13 for the four conditions, and P values were given by the Mann-Whitney U tests (only <0.01 P

values are labeled).
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flow cytometry data confirmed that both mesophyll cell population

and chlorophyll abundance per mesophyll cell reduced in response

to the high-salinity stress (Fig. 6E and F), and such response can be

stimulated by much lower salt concentrations, as evident by a series

of salt gradient treatments (Fig. S19).

It is worth noting that protoplasting efficiency may change on

abiotic stress due, for example, to variable structure or chemical

composition of themesophyll cell wall; such variation, when occurs in

a cell typeespecific manner, could have confounded the results
12
about cell populations based on scRNA-seq or flow cytometry.

Considering this possibility, we further tested if the reduced meso-

phyll population on the high-salinity treatment can be detected by

protoplasting-free approaches. Using microscopy (Fig. 6G), we

observed both a reduction in the area of red autofluorescence

(Fig. 6H) and a reduced red autofluorescence intensity per unit area

exhibiting red autofluorescence (Fig. 6I), confirming the reduced

mesophyll cell population and chlorophyll abundance per mesophyll

cell in response to the high-salinity stress.
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The transcriptional basis underlying the delay in development

toward mesophyll cells on the high-salinity treatment

To understand the transcriptional basis underlying the high sali-

nityeinduced chlorosis, we ordered single cells according to their

transcriptomes and reconstructed the time course expressionprofiles

along with the developmental maturation of mesophyll cells (Trapnell

et al., 2014). We focused on the mesophyll cells of MO because their

cell population showed the greatest change on the high-salinity

treatment (Fig. S17). We reconstructed the cell differentiation trajec-

tory containing mesophyll initial cells, mesophyll precursors, and the

mesophyll and large parenchyma of MO. The trajectory reveals that

after mesophyll initial cells are differentiated into the mesophyll pre-

cursor, two major differentiation trajectories exist, toward mature

mesophyll or toward large parenchyma (Fig. S20A and S20B). This

observation is in accordance with the developmental trajectories re-

ported in a previous study (Zeng et al., 2016).

We identified 7766 genes exhibiting significant expression varia-

tion, as mesophyll initial cells were differentiated toward mesophyll

cells. These genes fell into three distinct gene classes and depicted

waves of gene expression in a well-organized temporal order over

the course of development (Fig. S20C). Genes expressed early in the

pseudotime axis were associated with translation, related to the fast-

proliferation nature of initial cells, whereas genes expressed late

in the pseudotime axis were associated with photosynthesis

(Fig. S20D), confirming that the reconstructed cell differentiation

trajectory can be used to infer the temporal order of biological

processes.

Upon the high-salinity treatment, the time course expression

profiles along the developmental maturation of mesophyll cells

were substantially disrupted (Fig. S20E). In particular, genes spe-

cifically expressed in the early, intermediate, and late stages in the

typical developmental trajectory toward mesophyll were all sup-

pressed upon the high-salinity treatment (Fig. S20F), potentially

leading to the postponed proliferation, differentiation, and matura-

tion toward mesophyll cells, respectively, and accounting for the

reduced cell population of mesophyll and the chlorophyll abun-

dance per mesophyll cell, in response to the high-salinity stress.

Discussion

In this study, we applied scRNA-seq to rice seedling samples in

the baseline hydroponic growing condition (Kimura B solution) or

under three abiotic stresses. We obtained single-cell transcriptomes

for a total of 237,431 rice cells, identified major cell types using a

hybrid approach combining both computational and experimental

analyses (Figs. 2 and 3), and recognized transcriptome-based

counterpart cells between leaves and roots (Fig. 4). We unveiled

three basic principles for transcriptional responses of plant cells to

abiotic stresses: The response is often cell type specific, is shared to

some extent upon various abiotic stresses, and is sometimes com-

mon for the counterpart cells between leaves and roots (Fig. 5).

Besides, the proportional change in cell populations may also

participate in response to abiotic stresses through varied rates of cell

proliferation and differentiation (Fig. 6 and Figs. S20). Although the

molecular and developmental mechanisms should be further inves-

tigated for individual genes and cell types in the future, our study

showcases the power of single-cell transcriptome analyses in un-

derstanding the global heterogeneity among plant cells.

We noted that some caveats existed in our single-cell tran-

scriptome analyses. First, we discarded genes whose expression

levels were altered during protoplasting for dimensionality reduction

and cell clustering to avoid computational artifacts associated with

protoplast isolation. However, these genes may also be differentially

expressed among cells and therefore could have been informative
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(Fig. S21A). Nevertheless, we had confirmed that the removal of

protoplasting-sensitive genes from data normalization and integra-

tion did not fundamentally influence the results of dimensionality

reduction and cell clustering (Fig. S21B). While the impact of such a

computational procedure remains to be thoroughly investigated, it

can be experimentally alleviated with the development of more gentle

protocols for protoplasting and thereby reducing the number of

genes deemed to be excluded in data analysis.

Second, we developed in this study a computational strategy, the

weightedMICI (Fig. S6), to assist in assigning the cell type to each cell

cluster, but the validity of the strategy has yet to be independently

confirmed. Note that although not highlighted in the Results section,

we did compare our cell type assignment with two recently published

atlases of rice roots (Liu et al., 2021; Zhang et al., 2021a). Specifically,

we computationally integrated the 8538 single-cell transcriptomes in

the two root samples with those obtained previously for the 10,968

root cells isolated from Nipponbare (Liu et al., 2021) and the 31,204

root cells isolated from ZH11 (Zhang et al., 2021a).

Visually, we noticed in Fig. S22A that the cells detected in our

study largely overlaid with Liu et al. but was substantially different

from a study by Zhang et al., possibly because of the differences in

experimental materials and protoplasting protocols, as well as the

conversion of gene identity across different annotations of the rice

genome (Zhang et al., 2021a). Therefore, we put our focus on the

comparison with Liu et al., who assigned a total of eight root cell

types: metaxylem, root cap, root hair, epidermis (near root hair),

epidermis, endodermis, stele, and cortex. Among them, six broadly

correspond to the cell type terms used in our study (Fig. S22B). The

expression of the marker genes reported by Liu et al. for these six cell

types remained confined in our root cells of the corresponding UMAP

locations (Fig. S22B), indicating a reliable data integration between

the two studies.

To test if the cell type assignment was consistent between the two

studies, we labeled for these cell types individually on the UMAP

graph (Fig. S22C); the corresponding cell types between the two

studies greatly overlaid (Fig. S22C). Consistently, when the tran-

scriptomes of individual cells of the same type were combined, the

average transcriptomes of the corresponding cell types between a

study by Liu et al. and our study were highly correlated (Fig. S22D).

Four cell types identified in our study were not reported by Liu

et al.: the initial cell, pericycle, phloem, and procambium. Three of

themdthe initial cell (under the name of meristem), pericycle, and

phloemdwere reported by Zhang et al. Because Zhang et al. did not

provide cell type annotation for each cell, we labeled the expression

of themarker genes reported by Zhang et al. for these three cell types

on the UMAP graph (Fig. S23A). When our cells of these three cell

types were labeled onto the UMAP graph, two out of the three cell

types were substantially overlaid (the initial cell and phloem,

Fig. S23B). Collectively, these observations verified the reliability of

the cell type assignment in our study.

Third, it is worth noting that some cell types, such as the root cap,

were not assigned to any cell clusters in our scRNA-seq data (Fig. 3).

There are two potential explanations: (1) the cells of root caps were

not captured in the experiments, possibly attributable to the ten-

dency of the root cap to be disassociated from root tips (Kawata

et al., 1979), or (2) these cells were experimentally captured, but

we failed to identify them computationally. We noticed that a recent

scRNA-seq analysis of rice roots had assigned the root cap to (31/

10,968¼) 0.28% cells in Nipponbare (Liu et al., 2021) and identified

five marker genes for the root cap cells. To explore the reason for the

absence of root cap in our data, we labeled the expression levels of

these five marker genes individually on the UMAP graph. Some cells

expressing these marker genes were detected, but none of the five

marker genes were specifically expressed in any cell cluster

(Fig. S11F), suggesting that the sporadic root cap cells captured in
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our experiments did not show sufficient common transcriptome

features to be computationally clustered.

In our study, the guard cell was not assigned to any cell clusters

either (Fig. 2). To investigate the underlying causes, we labeled on the

UMAP graph the expression of SLAC1 (LOC_Os04g48530, Fig. S7),

which encodes a slow anion channel expressed predominantly in the

guard cell (Negi et al., 2008; Vahisalu et al., 2008). Cells expressing

SLAC1were located within Cluster 9, which has been assigned to the

epidermis, echoing the notion that the guard cell is a subtype of

epidermal cells (Liu et al., 2020). Guard cells were not assigned to any

cell cluster likely because the proportion of its population was rela-

tively small, and their expression was not sufficiently specialized to

form a unique cell cluster. Nevertheless, they can be computationally

identified within Cluster 9 using the expression of its marker gene

SLAC1. With the fast accumulating of additional marker genes,

enabled by the broader application of scRNA-seq to plants, the

curation of cell type or subtype will become more accurate.

The fourth caveat is that the detection of cell typeespecific dif-

ferential expression highly relies on the computational accuracy in

cell clustering and cell type assignment both in the Kimura B solution

and upon abiotic stress treatments. Although not highlighted in our

results, note that we did conduct additional experiments to confirm

the genome-wide pattern of differential gene expression detected by

the scRNA-seq analysis. In particular, we performed bulk RNA-seq

on the mesophyll cells sorted by flow cytometer (Fig. S24A), both

in the Kimura B solution and upon the high-salinity treatment. The

upregulation and downregulation of genes detected in the single-cell

transcriptomes were also observed using bulk RNA-seq on the sor-

ted mesophyll cells (Fig. S24B), confirming that our scRNA-seq has

successfully gauged the genome-wide pattern of differential gene

expression in a cell typeespecific manner.

Last but not least, we have to stress that the detection of pro-

portional change in cell populations based on the scRNA-seq data

can be confounded by numerous factors. For example, we reported

the reduction in mesophyll cell population upon the high-salinity

treatment using both scRNA-seq (Fig. 6B) and flow cytometry

(Fig. 6E). However, technically an alternative explanation is that in

response to stress, mesophyll cells become harder to be isolated

from the tissue or less likely to survive the protoplasting process.

Although our results based on fluorescence microscopy do not rely

on protoplast isolation (Fig. 6G and H), they are plausibly confounded

by the reduced chlorophyll abundance per mesophyll cell (Fig. 6F

and I), thereby reducing the sensitivity in the autofluorescence-based

detection of mesophyll cells. Note that albeit not highlighted in the

Results section, we also stained mesophyll and large parenchyma to

blue and red, respectively, using the fast green/safranin O dyes

(Abdellaoui et al., 2017); the reduction in the mesophyll cell popula-

tion upon the high-salinity treatment was still observed (P ¼ 0.02,

Mann-Whitney U test, Fig. S26). Generally speaking, additional his-

tological analyses would always be informative for drawing conclu-

sions about the proportional change in cell populations based on the

scRNA-seq data.

In this study, we observed that leaf and root often shared similar

transcriptomic features within the same tissue layer, except for

endodermal and epidermal cells (Fig. 4). Consistent with our obser-

vations, the transcriptomic similarity in vascular cells and dissimilarity

in epidermal cells between the leaf and root samples were also

recently reported in Arabidopsis (Zhang et al., 2021b). Yet, we did

observe that leaf epidermal cells and root hairs coexisted in some cell

clusters, such as Clusters 9 and 27 (Figs. 2 and 3). Nevertheless,

when we labeled cells from the leaf and root samples on the same

two-dimensional UMAP space, the leaf and root cells showed

apparent spatial partitioning within Cluster 9 or 27 (Fig. S25), con-

firming the transcriptomic dissimilarity between the leaf and root

epidermal cells (Fig. 4A and 4B).
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Looking forward to the future, scRNA-seq analyses, together with

single-cell epigenetic approaches (Buenrostro et al., 2015; Huan et

al., 2018; Lai et al., 2018; Hainer et al., 2019) and the developing

methods based on in situ reverse transcription that can keep the

spatial information (Giacomello et al., 2017), will synergistically

contribute to the characterization of the spatiotemporal tran-

scriptome atlas of plants. Furthermore, the procedure for nucleus

isolation is likely more uniform across tissues and treatments (Tian et

al., 2020; Long et al., 2021), so RNA-seq or single-nucleus assays for

transposase-accessible chromatin using sequencing could also

exert a strong influence. These genome-wide approaches will not

only promote our understanding of plant cell and developmental

biology at the cellular resolution but also help breed more robust

crops against environmental stresses (Rhee et al., 2019).

Materials and methods

Plant materials and growth conditions

Seeds of Oryza sativa ssp. japonica variety Nipponbare were

germinated on wet sterile filter paper. Seedlings were grown in

a growth chamber at 30�C (day)/28�C (night) under a 12-

h photoperiod. Rice seedlings were grown in Kimura B nutrient so-

lution for 14 days, which was the default condition in this study if not

otherwise specified. The Kimura B solution consists of 0.56 mM

(NH4)2SO4, 0.18 mM KH2PO4, 0.27 mM K2SO4, 0.24 mM Ca(NO3)2,

0.55 mM MgSO4, 0.02 mM Fe(II)-EDTA, 0.70 mM Na2SiO3, 9.14 mM
MnCl2, 46.9 mMH3BO3, 0.32 mMCuSO4, 0.76 mM ZnSO4, and 0.6 mM
Na2MoO4, with the pH adjusted to 5.8. On the background of Kimura

B solution, high-salinity (additional 200 mM NaCl), low-nitrogen

((NH4)2SO4 dropped out), and iron-deficiency (Fe(II)-EDTA dropped

out) solutions were prepared individually; rice seedlings were treated

with these solutions for three days, five days, or five days, respec-

tively, right before tissue collection on the 14th day. Fresh nutrient

solutions were replaced every threedays during the experiment.

As a spike-in control, seeds of Arabidopsis thaliana ecotype

Columbia (Col-0) were surface sterilized in 75% ethanol for 1 min,

followed by 10% bleach for 15 min and washing with sterile water

until clean. Seeds were sown on 1 � Murashige and Skoog

(MS)þ 1% Sucrose (w/v) plates and treated at 4�C for 3 days. Seeds

were further grown at 23�C (day)/23�C (night) under a 16-

h photoperiod.

Protoplasting

Rice and Arabidopsis protoplasts were isolated using previously

described protocols (Evrard et al., 2012; Jabnoune et al., 2015) with

modifications. Briefly, proximal shoots (~8 cm in length above the

root-shoot junction) of rice seedlings were finely chopped into

0.5e1 mm strips with freshly sharpened blades. The root tips (~2 cm

in length) of rice seedlings or the whole root of Arabidopsis seedlings

were chopped into small pieces in enzyme solution with flamed

scissors without shredding. Plant materials were transferred imme-

diately to 5 mL freshly prepared enzyme solution, including 1.5% (w/

v) cellulase RS (Yakult), 0.75% (w/v) macerozyme R-10 (Yakult),

0.6 M mannitol, 1 mM CaCl2, 10 mM MES (pH ¼ 5.5), 5 mM 2-

mercaptoethanol, and 0.1% BSA. The strips were then placed in a

vacuum pump (at 55 kPa) for 10 min at room temperature, followed

by incubation in the enzyme solution on a shaker set at 50 rpm. After

2-h gentle shaking, the digestion mixture was sequentially filtered

through a 70 mm (FALCON, Cat # 352,350) and a 40 mm (FALCON,

Cat # 352,340) nylon mesh sieve. Protoplasts were collected after

soft washing twice (centrifugation at 100g for 3 min with a swinging

bucket rotor) and were resuspended in 8% mannitol solution. The

numbers of isolated protoplasts were measured with hemocytometer
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counting chambers, and the viability of these protoplasts was

assessed by 0.4% trypan blue staining. Ultimately, ~300,000 pro-

toplasts were isolated for each sample. The concentration of pro-

toplasts was adjusted to 1500e2000 cells/mL.

scRNA-seq

Construction and sequencing of the single-cell RNA-seq

libraries

We constructed scRNA-seq libraries from isolated protoplasts,

following the manufacturer’s protocol of the 10x Genomics Chro-

mium Single Cell 30 Reagent Kits v3 (CG000183, RevC). The numbers

of protoplasts loaded onto the 10x Genomics Chromium single-cell

microfluidics device were ~6000, ~10,000, and ~20,000 for each

replicate of the rice and Arabidopsismixed samples, the rice leaf/root

samples, and the rice seedling samples, respectively. Polymerase

chain reaction (PCR) was performed for 11 cycles to amplify the

pooled complement DNA. After ligating to the sequencing adapters,

complement DNA was again amplified by PCR for 10e15 cycles,

according to the DNA concentration of the template. scRNA-seq li-

braries were sequenced on the Illumina NovaSeq 6000 platform in

the paired-end 150-nt mode. Services of library construction and

sequencing were provided by Berry Genomics.

Sequencing read alignment and generation of single-cell gene

expression matrices

We aligned scRNA-seq data and generated single-cell gene

expression matrices using Cell Ranger (version 3.1.0; 10�Genomics)

(Zheng et al., 2017). Sequencing reads of rice scRNA-seq samples

were aligned to the rice reference genome (release 7 of the MSU Rice

Genome Annotation Project, RGAP7) (Kawahara et al., 2013) with the

embedded STAR (version 2.6.0a) (Dobin et al., 2013). Reads that

share the same cell barcode, gene identity, and unique molecular

identifier (UMI, one mismatch allowed) were combined into a UMI

count in an effort to remove PCR duplicates during sequencing li-

brary preparation. Based on the distribution of the total UMI count

within each GEM droplet among all cell barcodes, the valid cell

barcodes were determined by Cell Ranger. Briefly, the cell barcodes

with the total UMI count >10% of the total UMI count of the 99th

percentile of the expected number of recovered cells were consid-

ered representing genuine cells. The expected cell number was

estimated according to the 10x Genomics manufacturer’s protocol

(approximately 62.5% of the loaded cell number). Finally, a gene

expression matrix for the genuine cells of each scRNA-seq sample

was generated, of which each row represented a gene, and each

column represented a valid cell barcode.

Sequencing reads of the rice and Arabidopsis mixed samples

were aligned to the concatenated reference of RGAP7 and the Ara-

bidopsis information resource 10 genome release (TAIR10) (Lamesch

et al., 2012). To accurately classify the species origin of each tran-

script, we kept only uniquely mapped and 100% matched reads for

the following analyses.

Normalization and integration for scRNA-seq data

After removing protoplasting-sensitive genes, we normalized and

integrated gene expression matrices across scRNA-seq samples us-

ing the Seurat R package (version 3.2.3). Briefly, we normalized gene

expression levels using function “SCTransform” to reduce the influ-

ence from variation in the cellular sequencing depth (Hafemeister and

Satija, 2019). We selected 3000 most highly variable genes across

samples using the function “SelectIntegrationFeatures.” Finally, we

employed the reference-based Seurat integration workflow to inte-

grate multiple samples (Stuart et al., 2019), setting samples “one-

week-old root” from Shulse et al. (2019) and seedling 1 as the refer-

ences for Arabidopsis and rice, respectively.
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To compare the single-cell transcriptome data for rice roots re-

ported in our study and two recent studies (Liu et al., 2021; Zhang

et al., 2021a), we downloaded the scRNA-seq data of the two

studies from Gene Expression Omnibus under the accession number

GSE146035 and Single Cell Expression Atlas under the accession

number E-ENAD-52, respectively. To make the data from three

sources directly comparable, we conversed the gene annotation of

the rice genome in a study by Zhang et al. (2021) from Os-

Nipponbare-Reference-IRGSP-1.0 to RGAP7, as used in our study

and in a study by Liu et al. (2021). We normalized and integrated the

gene expression matrices across three scRNA-seq data sets using

the same parameters as described earlier, setting root 2 in our study

as the reference.

Dimensionality reduction and cell clustering

We performed linear dimensionality reduction (Chen et al., 2019)

of the integrated scRNA-seq data using function “RunPCA” in the

Seurat R package. We chose the top 100 principal components

and performed nonlinear dimensionality reduction for visualization,

with function “UMAP” in the UMAP R package (version 0.2.7.0; under

the parameters n_neighbors ¼ 10, metric ¼ “pearson2”, and

min_dist ¼ 0.01) (McInnes et al., 2018). We further clustered cells

according to the top 100 principal components based on the Louvain

algorithm, using functions “FindNeighbors” and “FindClusters”

(resolution ¼ 0.75) in the Seurat R package.

Identification of cluster-specific genes

We identified the cluster-specific genes for leaf samples (two

replicates combined) by function “FindAllMarkers” (min.pct ¼ 0.25,

logfc.threshold ¼ 0.25) in the Seurat R package. The cluster-specific

genes for root samples were similarly identified.

Assignment cell types to clusters by MICI

We compiled a list of cell type marker genes reported in previous

studies (Table S6) and combined single cells from two leaf samples

or two root samples. We developed a weighted MICI algorithm for

cell type determination for each cell (Fig. S6). Specifically, we first

estimated the weight for each reported marker gene from the vari-

ance among cell clusters in the logarithm-transformed, cluster-

averaged expression level (in the unit of CPM) of each marker gene.

All 29 clusters were used for the leaf, and 27 clusters were used for

the root (excluding Clusters 23 and 24, whose cells were entirely

assigned to the leaf). Then, the expression level of each marker gene

was logarithm transformed and scaled among all cells detected in the

leaf samples or root samples. For each cell, we calculated a MICI

value for each cell type as the sum of the weighted expression levels

of all marker genes for the cell type. The cell type of the highest MICI

value was assigned to the cell being queried if the value was greater

than 2; otherwise, the cell type was “undermined.” Finally, the cell

type (including “undetermined”) of the largest cell population was

assigned to the cell cluster being queried.

Identification of leaf and root cells in the whole seedling

samples

We identified leaf and root cells in the whole seedling samples

based on the expression of leaf-biased and root-biased genes, which

were predetermined from the single-cell transcriptomes of leaf and

root samples. To identify leaf-biased and root-biased genes for each

cell cluster, we defined a leaf-biased expression score for each gene

as the product of an expression-level score and a cell fraction score.

The expression-level score of a gene was defined as the ratio of its

average expression level among all cells in the cluster between Leaf-

1 and Root-1 samples (or between Leaf-2 and Root-2). The
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expression level was in the unit of CPM, adding one to all the values

for the sake of logarithm transformation.

The cell fraction score of a gene was defined for each cell cluster

as the ratio between the fraction of leaf cells that express the gene

and the fraction root cells that express the gene; we arbitrarily

assigned cell fraction <10% as 10% to avoid large faction scores

for genes that are only expressed in a tiny fraction of cells but

exhibit a great fold difference between leaf and root samples (e.g.,

1% in an organ and 0.01% in another). We estimated the leaf-

biased expression scores for both biological replicates, and the

total logarithm-transformed score was used for selecting biased

expression genes. For each cell cluster, three genes with the

highest leaf-biased scores were defined as leaf-biased genes, and

three genes with the lowest leaf-biased scores were defined as

root-biased genes (Table S9). It is worth noting that in an effort to

use the same set of genes to partition leaf and root cells for all four

environmental conditions, we discarded genes with the average

expression level deviating by twofold on any of the three

treatments.

For each cell cluster in the whole seedling samples, we scaled

expression levels for each predefined leaf-biased and root-biased

gene. For each cell, we estimated the average scaled expression

level of the three leaf-biased (root-biased) genes as the index of leaf

(root) for the cell. Cells in the whole seedling samples with a greater

index of leaf (or root) were classified as leaf (or root) cells. If these two

indices are equal in a cell, the organ origin of the cell was not

determined. The detailed annotation (organ and cell type) for each

cell in each sample is provided in Table S13.

Identification of cell type-specific stress-responding genes

We combined cells of the same type from four scRNA-seq repli-

cates of an environmental condition. We defined stress-responding

genes as DEGs by function “FindMarkers” (min.pct ¼ 0,

logfc.threshold ¼ 0) with >1.5-fold difference in the average

expression level (in the unit of CPM) upon a stress treatment and

P < 0.01 in the Mann-Whitney U test among individual cells. The

intersection size of DEGs across cell types was visualized using the

function “upset” in the UpSetR R package (version 1.4.0) (Lex et al.,

2014).

Reconstruction of developmental trajectories from scRNA-seq

data

The developmental trajectories from mesophyll initial cells

(Cluster 0, from all four conditions, same below) to mesophyll pre-

cursor (Cluster 1, 17e19), mesophyll (Cluster 21, 22), and large

parenchymal cells (Cluster 20) were reconstructed using the

Monocle R package (version 2.14.0) (Trapnell et al., 2014). Note that

for mesophyll and large parenchymal cells, only those of MO were

included here, as cells of PO by definition should not be placed on

this trajectory. We performed dimensionality reduction by function

“reduceDimension” (reduction_method ¼ “DDRTree”) and ordered

cells along the trajectory by function “orderCells”. To analyze the

dynamic gene expression pattern along the pseudotime, we

selected 7766 significantly variable genes (false discovery

rate < 0.01) in the four control seedling samples by function

“differentialGeneTest”.

The gene ontology enrichment analyses

The gene ontology enrichment analyses were performed for these

genes on the Web site AgriGO2 (http://systemsbiology.cau.edu.cn/

agriGOv2) (Tian et al., 2017).
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Bulk RNA-seq

Total RNA was extracted with TRIzol from fresh plant materials or

protoplasts. Strand-specific RNA-seq libraries were constructed,

followed by high-throughput sequencing on Illumina NovaSeq 6000

platform in the paired-end 150-nt mode. Sequencing reads of low

quality (>50% bases with a Phred score < 20) were filtered. After

sequencing adapters being removed by fastp, the clean reads were

aligned to the concatenated reference of RGAP7 and TAIR10 with

STAR (–outFilterMismatchNmax 0, –outFilterMultimapNmax 1). Gene

expression levels were estimated from the uniquely mapped reads

using HTSeq (version 0.11.2) (Anders et al., 2015).

RNA in situ hybridization assay

RNA in situ hybridization assay was performed as previously

described (Umeda et al., 1999), with minor modifications. Briefly,

fresh leaves and roots of rice seedlings were fixed in FAA solution

(50% ethanol, 5% acetic acid, and 3.7% formaldehyde), dehydrated,

and embedded in paraffin (Sigma-Aldrich). The embedded samples

were sliced into 7-mm sections, which were then mounted on slides.

We selected target genes mainly from the identified cluster-specific

genes (Fig. S5; Table S5) but also took the average gene expres-

sion level into consideration. The specific sequences of these target

genes were used as probes (Table S14) and were cloned into the

pSPT18 vector, which was linearized afterward. Probes were in vitro

transcribed using Digoxigenin RNA labeling kit (Roche) and then

applied on tissue sections for hybridization. After washing, the slides

were incubated with an anti-digoxigenin antibody (Roche), the signal

of which was then detected in the nitro-blue tetrazolium/5-bromo-4-

chloro-30-indolyphosphate stock solution (NBT/BCIP solution;

Roche). Images were taken in the bright field mode using Olympus

CX23.

Flow cytometry

Protoplasts isolated from leaves of two-week-old rice seedlings

were loaded onto the flow cytometer (BD FACS Aria II cell sorter,

using a 100 mmnozzle) at a rate of 2000e3000 events per second and

fluid pressure of 20 psi. We set up the gate for sorting rice mesophyll

cells based on the red fluorescence (695/40 nm) intensity and the

forward scatter, and with Arabidopsis root protoplasts as the nega-

tive control. To prepare the bulk RNA-seq library for mesophyll cells,

we sorted mesophyll cells into Qiagen RLT lysis buffer. The red

fluorescence intensities of ~60,000 cells were recorded for each

sample.

Microscopy

The primary shoots of rice seedlings were fixed with a half-cut

styrofoam board and were sliced with a freshly sharpened blade.

The emitted red autofluorescence was captured with a Leica

confocal microscope (TCS SP5). The total red fluorescence intensity

and the mesophyll cell area were estimated with ImageJ under

default parameters. Their ratio was used to infer the average red

fluorescence intensity per unit mesophyll cell area. The total cell area

was estimated from bright-field images. The fraction of cell areas

emitting red fluorescence was used to infer the proportion of the

mesophyll cell population.

Cross-section tissue slices were also stained with the modified

fast green/safranine O staining kit following the manufacturer’s pro-

tocol (Solarbio, China) and were mounted with neutral balsam

immediately. Images were taken with an optical microscope

(Olympus CKX41). The areas of mesophyll and large parenchymal

cells were measured with ImageJ.

http://systemsbiology.cau.edu.cn/agriGOv2
http://systemsbiology.cau.edu.cn/agriGOv2
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