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Abstract DNA methylation is an important epigenetic mark that plays a vital role in gene expres-

sion and cell differentiation. The average DNA methylation level among a group of cells has been

extensively documented. However, the cell-to-cell heterogeneity in DNA methylation, which reflects

the differentiation of epigenetic status among cells, remains less investigated. Here we established a

gold standard of the cell-to-cell heterogeneity in DNA methylation based on single-cell bisulfite

sequencing (BS-seq) data. With that, we optimized a computational pipeline for estimating the

heterogeneity in DNA methylation from bulk BS-seq data. We further built HeteroMeth, a data-

base for searching, browsing, visualizing, and downloading the data for heterogeneity in DNA

methylation for a total of 141 samples in humans, mice, Arabidopsis, and rice. Three genes are used

as examples to illustrate the power of HeteroMeth in the identification of unique features in DNA

methylation. The optimization of the computational strategy and the construction of the database

in this study complement the recent experimental attempts on single-cell DNA methylomes and will

facilitate the understanding of epigenetic mechanisms underlying cell differentiation and embryonic

development. HeteroMeth is publicly available at http://qianlab.genetics.ac.cn/HeteroMeth.
Introduction

DNA methylation is a heritable epigenetic mark that has a
strong impact on gene expression and plays a vital role in

genomic imprinting, cell differentiation, X chromosome inacti-
vation, and transposon silencing [1–5]. The average intensity of
methylation in a DNA region among a group of cells (DNA

methylation level) can be quantified by whole-genome bisulfate
sequencing (BS-seq), in which sodium bisulfate converts
nces and
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cytosine to uracil (and subsequently to thymine during PCR)
but leaves methylated cytosine unaffected. Therefore, DNA
methylation level can be estimated by the fraction of converted

cytosine in the bisulfate-treated DNA samples [6].
Although DNA methylation level has been extensively

studied [1–5,7–9], the heterogeneity in DNA methylation

among individual cells remains less investigated [10]. It has
been increasingly recognized that the cell-to-cell heterogeneity
in DNA methylation plays an important role in cell differenti-

ation and embryonic development because it establishes tran-
scriptomic variation among isogenic cells [11–15]. In
addition, the cell-to-cell heterogeneity in DNA methylation
may also play a role in generating heterogeneity among tumor

cells [16].
Both experimental and computational strategies have been

developed to quantify the cell-to-cell heterogeneity in DNA

methylation. For example, BS-seq has been adapted to indi-
vidual cells. However, single-cell BS-seq (scBS-seq) remains
technically challenging and cost-intensive, and therefore it

had only been applied to a small number of studies
[11–15]. Computational strategies based on bulk BS-seq data
have also been developed. Since the methylation status

(methylated or unmethylated) of several consecutive CpG
sites can be accessed in a single BS-seq read, the complexity
of the DNA methylation pattern in a cell population can be
determined from individual sequencing reads in the bulk BS-

seq experiment [17]. However, such computational strategies
may suffer from an overestimation of the cell-to-cell hetero-
geneity, because technical errors in the BS-seq experiments

(e.g., the conversion efficiency of sodium bisulfite, PCR
errors and biases, and sequencing errors) cannot be distin-
guished from the genuine heterogeneity among cells. The

extent of such overestimation has not been examined in
experiments.

In this study, we established a gold standard of the cell-to-

cell heterogeneity in DNA methylation from scBS-seq data,
based on which we fine-tuned the computational approaches.
With that, we further processed a large number of bulk BS-
seq datasets from humans, mice, Arabidopsis, and rice.

Finally, we built a database HeteroMeth (standing for hetero-
geneity in DNA methylation), where the data for heterogeneity
in DNA methylation from 4 species can be retrieved and com-

pared. This database will significantly contribute to the under-
standing of the epigenetic mechanisms underlying the
differentiation of cells and the development of organisms.

Results and discussion

Establishing a gold standard of the heterogeneity in DNA

methylation from scBS-seq data

To develop a computational method that can gauge the cell-to-
cell heterogeneity in DNA methylation from bulk BS-seq data,
we attempted to establish a gold standard based on scBS-seq

data. To this end, we retrieved the scBS-seq reads from 20
mouse embryonic stem cells (mESCs) [14]. All reads uniquely
mapped to a DNA segment that covers at least 4 methylation
sites were used for subsequent analyses. To determine the iden-

tities of the two epialleles in a diploid cell, we identified the top
2 methylation patterns (A1 and A2, respectively) of a DNA
segment in each cell based on their frequencies among all reads
mapped to this DNA segment (Figure 1A). The log2-
transformed frequency ratio between the top 2 methylation

patterns exhibited a bimodal distribution (Figure 1B), in which
the left peak indicated a heterozygous state of two epialleles
(A1/A2) and the right one indicated a homozygous state

(A1/A1). In the latter scenario, A2 was observed with low
frequency in the scBS-seq data, likely due to technical errors.
The cutoff of the frequency ratio was set to 11.5 (Figure 1B),

based on which 57% of DNA segments are epigenetically
heterozygous in a cell (Figure 1B).

For the DNA segment shown in Figure 2A, we calculated
two parameters that reflect heterogeneity in DNA methylation,

Shannon entropy and Gini index, from 40 epialleles identified
from 20 cells, and used them as the gold standard of the
heterogeneity in DNA methylation. Segments exhibiting simi-

lar DNA methylation levels may exhibit various extents of
heterogeneity in DNA methylation (Figure 2B). For example,
two segments shown in Figure 2B exhibited a significant differ-

ence in Shannon entropy (P< 0.001, permutation test,
Figure S1).

Note that the heterogeneity calculated here comprises both

the cell-to-cell heterogeneity and the epiallelic heterogeneity
within a cell. To determine whether the total heterogeneity in
DNA methylation can be used as a proxy for the cell-to-cell
heterogeneity, we concatenated the two epialleles of 4 consec-

utive DNA methylation sites in a cell (i.e., 8 methylation sites)
and calculated Shannon entropy from them. The total hetero-
geneity (calculated based on 4 consecutive methylation sites of

40 epialleles) and the cell-to-cell heterogeneity (calculated
based on 8 ‘‘consecutive” methylation sites of 20 cells) are
highly correlated (r = 0.96, P < 10�16, Pearson’s correlation),

suggesting that the total heterogeneity is a good predictor of
the cell-to-cell heterogeneity.

Reproducing the gold standard from in silico merged scBS-seq

data and from bulk BS-seq data

To examine whether the gold standard can be reproduced from
bulk BS-seq data, we first in silico merged all sequencing reads

from the scBS-seq data of these 20 mESCs (single-cell merged)
and calculated Shannon entropy and Gini index from these
reads (Figure 2A). Not unexpectedly, the heterogeneity calcu-

lated was higher in the merged data (Figure 2C), because the
methylation patterns that were discarded in the scBS-seq gold
standard (A3, A4. . . in Figure 1A and Figure 2A) were used in

the calculation of the merged data. To eliminate this effect, we
removed the low-frequency methylation patterns in the merged
data that likely reflect technique errors (e.g., incomplete bisul-
fite conversion, PCR errors, and sequencing errors), and found

that with a frequency cutoff of 1/32, the heterogeneity in the
gold standard can be faithfully reproduced from the in silico
merged data (Figure 2D).

Bulk BS-seq experiment was also performed for the same
batch of mESCs. With the same frequency cutoff of methyla-
tion patterns (1/32), the heterogeneity of DNA methylation

can be accurately estimated from the bulk BS-seq data
(Figure 3A). The landscape of heterogeneity in DNA methyla-
tion in a region of chromosome 9 is shown as an example

(Figure 3B).



Figure 1 A gold standard of the cell-to-cell heterogeneity in DNA methylation

A. Representative scBS-seq reads from cell 1 that were mapped to the mouse genome (Chr 9: 35,113,079–35,113,167) are shaded. Cytosine

in a BS-seq read represents a methylated CpG site, whereas thymine represents an unmethylated CpG site. Examples of heterozygous

(A1/A2, Chr 9: 35,113,079–35,113,167 in cell 1) and homozygous (A1/A1, Chr 17: 39,981,368–39,981,383 in cell 14) epigenetic status are

shown, respectively. The identity and number of all the methylation patterns in a cell are shown. Circles represent 4 consecutive CpG sites

in a DNA segment, among which closed ones represent methylated sites and open ones represent unmethylated sites. Methylation patterns

are ranked by their frequencies and Ai represents the ith methylation pattern. B. The distribution of the log2-transformed frequency ratio

between the top 2 methylation patterns. The dashed line indicates the cutoff of the frequency ratio. If there is only one methylation pattern

present in a DNA segment, a ‘‘pseudo” methylation pattern was added with a read count equal to 1.
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HeteroMeth: A database of cell-to-cell heterogeneity in DNA

methylation calculated from bulk BS-seq data

With the computational approach described earlier, we built
HeteroMeth, a database of cell-to-cell heterogeneity in DNA
methylation calculated from bulk BS-seq data. The functional-
ity of HeteroMeth is shown in Figure 4, including searching,

browsing, visualizing, and downloading the data for
heterogeneity in DNA methylation for a total of 141 samples

in humans, mice, Arabidopsis, and rice.

HeteroMeth: Search by genes

HeteroMeth allows depicting the heterogeneity in DNA
methylation. Data in five regions are provided for each gene
annotated in the NCBI Reference Sequence Database



Figure 2 Reproducing the gold standard from the in silico merged scBS-seq data

A. Heterogeneity in DNA methylation estimated from the 40 epialleles that were identified in the mouse scBS-seq data of a DNA segment

(Chr 2: 98,507,055–98,507,113). DNA methylation level and heterogeneity (Shannon entropy and Gini index) of this segment are provided

for both scBS-seq data (40 epialleles identified from 20 cells) and the in silico merged scBS-seq data (all sequencing reads from 20 cells),

respectively. B. An example of two DNA segments (Chr 2: 98,507,248–98,507,412 and Chr 2: 98,502,437–98,507,595) that exhibit similar

DNA methylation levels but exhibit different extents of heterogeneity. Each dot represents a DNA segment that contains 4 consecutive

CpG sites. The epialleles identified in single cells are provided (the purple and green dots). Note that the DNA methylation status was not

identified in every single cell due to the limited sequencing depth in scBS-seq. P values were calculated from the permutation test. C.

Heterogeneity calculated from the unfiltered merged data. The dashed line represents y= x. Heterogeneity calculated from the merged

data is overestimated (greater Shannon entropies and smaller Gini indices). D. The gold standard can be faithfully reproduced from the

merged data with the filtered data.
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Figure 3 Reproducing the gold standard from the bulk BS-seq data

A. The gold standard can be faithfully reproduced from the corresponding filtered bulk BS-seq data. B. The landscape of heterogeneity in

DNA methylation (Chr 9: 3,000,000–3,020,000) is largely reproduced from the filtered in silico merged scBS-seq and the filtered bulk

BS-seq data.
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(RefSeq), including gene body defined as from the transcrip-

tion start site (TSS) to the transcription end site (TES),
1000 bp upstream of TSS (Upstream 1000), 500 bp upstream
of TSS (Upstream 500), 500 bp downstream of TES (Down-

stream 500), and 1000 bp downstream of TES (Downstream
1000). After selecting a sample from a species and a region,



Figure 4 The functionality of HeteroMeth
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users can retrieve the DNA methylation information of a
group of genes. The output is displayed as a table that contains
the DNA methylation level and Shannon entropy of each of

these genes (Figure 5A). Three file formats (.csv, .tsv, and
.txt) are provided for downloading. In addition, the output
page provides a link (by clicking ‘‘Show all”) for each gene that

displays a histogram of DNA methylation level and Shannon
entropy of each of the five aforementioned regions.

As a proof of concept, we show three genes as examples to
illustrate the power of such comparative analysis. We quanti-

fied DNA methylation level and Shannon entropy in three
human cell lines, K562, GM12878, and HepG2, which were
derived from lymphoblast, lymphoblastoid, and liver hepato-

cellular cells, respectively. LPCAT2, a gene related to inflam-
matory reactions, exhibited significantly higher (P < 0.001,
permutation test) Shannon entropy in the two immune

system-derived cell lines (Figure 6A), whereas INSIG1, a gene
related to cholesterol metabolism, exhibited significantly
higher (P < 0.001, permutation test) Shannon entropy in the

liver-derived cell line HepG2 (Figure 6B). In contrast, such
pattern was not observed for DNA methylation level. More
interestingly, Mocs1, a gene related to molybdenum cofactor
biosynthesis, exhibited reduced heterogeneity (P < 0.001, per-

mutation test) in DNA methylation over the developmental
progress of the mouse heart, while its DNA methylation level
remained largely unchanged (Figure 6C). This may be

explained by the role of molybdenum in maintaining the
energy mechanism in mitochondria [18]. These observations
spur further investigation on this gene for detailed molecular

mechanisms. Taken together, these observations suggest that
HeteroMeth is a powerful platform to identify unique features
of heterogeneity in DNA methylation and to transform BS-seq
data into biological knowledge.

HeteroMeth: Genome browser

For each sample in HeteroMeth, users can browse and visual-

ize the heterogeneity in DNA methylation. After choosing a
species, a specific UCSC track hub will provide the heterogene-
ity in DNA methylation across a genome region for multiple
samples (Figure 5B). Users can query the heterogeneity state

of a DNA region by entering a gene ID or a genomic location
in a chromosome. We use a color gradient from light blue
(Shannon entropy = 0, lowest heterogeneity) to dark blue

(Shannon entropy = 1, highest heterogeneity) to visualize the
magnitude of heterogeneity in DNA methylation (Figure 5B).
Users can further access the Shannon entropy of each DNA

segment that contains 4 consecutive CpG sites by selecting
the ‘‘pack” mode. This allows the comparison of DNA methy-
lation heterogeneity with SNPs, CpG islands, other genomic
marks, and a variety of third-party annotations.

HeteroMeth: Browse and download

We also provide a way to browse and download our data. For

each species, HeteroMeth shows an overview of the current
database content for this species, including the reference gen-
ome assembly, the tissues, a short description of the samples,

the links to PubMed or the Encyclopedia of DNA Elements
(ENCODE), and the accession numbers in the Gene Expres-
sion Omnibus (GEO). The heterogeneity state of each DNA

segment containing 4 consecutive CpG sites can be down-
loaded as well (Figure 5C). The tab-delimited file contains
the information of the DNA segment, including the chromo-
some ID, the position in chromosome, DNA methylation level,

and Shannon entropy.

Perspectives

HeteroMeth is the first database for searching, browsing, visu-
alizing, and downloading the heterogeneity in DNA methyla-

tion for multiple species, mutants, developmental stages, and
tissues. We will update HeteroMeth continuously to incorpo-
rate datasets from more species and samples. We will also
develop a tool to estimate the heterogeneity of user-provided

data. In addition, statistical significance based on permutation
test can be incorporated into the database in the future for cus-
tomized comparisons between the Shannon entropy values of

any two DNA segments.
Currently, at least 4 consecutive CpG sites on the same BS-

seq read are required for the estimation of the heterogeneity in

DNA methylation. Therefore, heterogeneity in DNA methyla-
tion can only be assessed in the genomic regions with relative
high CpG densities. This hurdle can be overcome when high-

throughput sequencing technologies further develop and
longer sequencing reads become available. Alternatively,
heterogeneity in DNA methylation in lower CpG density
regions can be evaluated when the paired-end sequencing reads

overlap. HeteroMeth will be updated to include more genomic
regions in the future.

BS-seq detects both 5-methylcytosine (5mC) and 5-

hydroxymethylcytosine (5hmC) in the genome, whereas the
newly developed technology, oxidative BS-seq (oxBS-seq),
can detect only 5mC [19]. With more data generated using

oxBS-seq, it would be feasible to calculate the heterogeneity
in 5mC and 5hmC, respectively. It is of note that the
density of 5hmC was much lower than that of 5mC sites
[20], and longer sequencing reads are thus required to obtain



Figure 5 The interface of HeteroMeth

A. After submitting a list of gene IDs, the DNA methylation level and Shannon entropy for each gene can be browsed and downloaded. B.

The landscapes of heterogeneity in DNA methylation in the wild type Arabidopsis and mutants are shown in the UCSC Genome Browser.

A genomic region of Arabidopsis chromosome 1 (Chr 1: 100,000–330,000) is shown. A color gradient from light blue (Shannon

entropy = 0) to dark blue (Shannon entropy = 1) shows the magnitude of heterogeneity in DNA methylation. C. HeteroMeth provides

links to the associated publications or ENCODE experiment ID, and the accession numbers in GEO. Processed HeteroMeth data are also

available for downloading.
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Figure 6 Examples of genes showing the difference in Shannon entropy between cell lines or developmental stages

A. LPCAT2, a gene related to inflammatory reactions, exhibits similar DNA methylation levels but different Shannon entropy values

among three human cell lines including K562, GM12878, and HepG2. B. INSIG1, a gene related to cholesterol metabolism, exhibits

similar DNA methylation levels but different Shannon entropy values among three human cell lines including K562, GM12878, and

HepG2. C.Mocs1, a mouse gene related to the biosynthesis of molybdenum cofactor, exhibits different Shannon entropy values during the

development of mouse heart. Data in embryos of 12.5 and 14.5 days were not shown due to the low quality. Error bars that represent the

standard errors of the mean values were calculated with bootstrapping and P values were calculated from permutation test. ***indicates a

significant difference in DNA methylation level or heterogeneity between different samples (P < 0.001). LPCAT2, lysophosphatidyl-

choline acyltransferase 2; INSIG1, insulin induced gene 1; Mocs1, molybdenum cofactor biosynthesis protein 1.
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heterogeneity in 5hmC. We will update HeteroMeth to

incorporate this information when available.

Materials and methods

Downloading the BS-seq data

Raw reads of scBS-seq data from 20 mESCs cultured in serum
were downloaded from GEO under the accession number

GSE56879. The corresponding bulk BS-seq data were also
downloaded. Raw reads of 141 DNA methylomes were down-
loaded from GEO [21] and the ENCODE project [22], which
include 12 from humans, 26 from mice, 94 from Arabidopsis,

and 9 from rice. The genome annotations were retrieved from
build GRCh38 [23], build GRCm38, The Arabidopsis
Information Resource (TAIR10) [24], and the MSU Rice

Genome Annotation Project (RGAP7) [25], respectively.
Description of these samples is provided in Table S1.
Processing of the BS-seq data

The first 9 nucleotides of each read from the scBS-seq data and
the corresponding bulk BS-seq data were introduced during

the preparation of the high-throughput sequencing library
[14]. They, together with the poor-quality bases (Phred score
<20) and the adaptor sequence, were trimmed with Trim

Galore! (v0.4.4; http://www.bioinformatics.babraham.ac.uk/
projects/trim_galore/; --clip_r1 9 --clip_r2 9 --paired).
Trimmed reads were further mapped to the reference genome
using Bismark (v0.17.0; --bowtie2 --non_directional) [14,26].

http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
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Duplicated reads generated during the library preparation and
reads mapped to multiple locations in the genome were dis-
carded afterward.

The bulk BS-seq data in humans, mice, Arabidopsis, and
rice were treated similarly. After discarding the poor-quality
reads (>50% bases with a Phred score <20) and trimming

the adaptor sequences, the trimmed reads (at least 30 bp) were
further mapped to their reference genome with Bismark using
default parameters.

To estimate the heterogeneity in DNA methylation from
bulk BS-seq data, we identified all DNA segments that contain
4 consecutive CpG sites and that were covered by at least 16
sequencing reads. Methylation patterns covered by at least 2

BS-seq reads were identified for each DNA segment and their
frequencies were estimated. Methylation patterns with a fre-
quency less than 1/32 likely result from technical errors (e.g.,

incomplete bisulfite conversion or PCR errors, see main text
for details) and were consequently filtered.

Estimating DNA methylation level and heterogeneity for a DNA

region

Shannon entropy and Gini index were calculated to indicate

the heterogeneity in DNA methylation as follows [17]:

Shannon entropy ¼ 1

b

Xk
i¼1

� ni
N
log

ni
N

2

� �

where b is the number of consecutive CpG sites in a DNA seg-
ment (b = 4 or 8 in this study); N is the number of sequencing

reads that cover this segment; k is the number of methylation
patterns that were observed in this segment; and ni (i � 1
and � k) is the number of reads for methylation pattern i.

Gini index ¼ 1

k� 1
kþ 1� 2

Pk
i¼1ðkþ 1� iÞniPk

i¼1ni

 ! !

In the calculation of Gini index for a segment with 4 con-
secutive CpG sites, we designate k as (24 =) 16 because there
are a total of 16 possible methylation patterns for 4 consecu-

tive CpG sites. ni was indexed in non-decreasing order
(ni � ni+1), with ni designated as 0 if the methylation pattern
i was not observed in the data.

DNA methylation level was calculated as the fraction of

methylated cytosine in total cytosine (mC/mC + C).
We defined 5 regions for each gene annotated in RefSeq

database, including 1000 bp upstream of TSS, 500 bp

upstream of TSS, gene body, 500 bp downstream of TES,
and 1000 bp downstream of TES. For each region, the DNA
methylation level and the Shannon entropy were estimated

for all DNA segments containing 4 consecutive CpG sites.
The obtained average values were defined as the DNA methy-
lation level and the Shannon entropy of this region,

respectively.
Database implementation

HeteroMeth interfaces to the backend database were orga-

nized using PHP and MySQL. HTML5 with JavaScript was
used to construct the webpage. The histogram of DNA methy-
lation level and Shannon entropy of all gene regions were cre-

ated by highcharts.js library (http://www.hcharts.cn/). UCSC
Genome Browser [27] was used to visualize the heterogeneity
in DNA methylation.
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