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Abstract

The inherent stochasticity generates substantial gene expression variation among isogenic
cells under identical conditions, which is frequently referred to as gene expression noise or
cell-to-cell expression variability. Similar to (average) expression level, expression noise is
also subject to natural selection. Yet it has been observed that noise is negatively correlated
with expression level, which manifests as a potential constraint for simultaneous optimiza-
tion of both. Here, we studied expression noise in human embryonic cells with computa-
tional analysis on single-cell RNA-seq data and in yeast with flow cytometry experiments.
We showed that this coupling is overcome, to a certain degree, by a histone modification
strategy in multiple embryonic developmental stages in human, as well as in yeast. Impor-
tantly, this epigenetic strategy could fit into a burst-like gene expression model: promoter-
localized histone modifications (such as H3K4 methylation) are associated with both burst
size and burst frequency, which together influence expression level, while gene-body-local-
ized ones (such as H3K79 methylation) are more associated with burst frequency, which
influences both expression level and noise. We further knocked out the only “writer” of
H3K79 methylation in yeast, and observed that expression noise is indeed increased. Con-
sistently, dosage sensitive genes, such as genes in the Wnt signaling pathway, tend to be
marked with gene-body-localized histone modifications, while stress responding genes,
such as genes regulating autophagy, tend to be marked with promoter-localized ones. Our
findings elucidate that the “division of labor” among histone modifications facilitates the inde-
pendent regulation of expression level and noise, extend the “histone code” hypothesis to
include expression noise, and shed light on the optimization of transcriptome in evolution.
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Author summary

Gene expression noise, or cell-to-cell expression variability, has been a topic of intense
interest for more than a decade. The prevailing model of “burst-like transcription” medi-
ated by the promoter transitions between on and off states explains the formation of noise
in eukaryotes. Albeit widely accepted, the cis- elements that determine the burst frequency
and burst size remain largely unknown. Here we systematically examined the relationship
between transcriptional burst frequency/size and all major histone modifications in vari-
ous cell types, including human embryonic cells, mouse embryonic stem cells, and yeast,
and found that histone markers can be divided into two groups based on their associations
with burst frequency/ size. Coincidently, promoter-localized histone markers are associ-
ated with both burst size and burst frequency whereas gene-body-localized ones are more
associated with burst frequency. We further knocked out a gene that is responsible for
“writing” a gene-body histone mark in yeast, and found that burst frequency is indeed
reduced. Our findings reveal a new mechanism of transcriptional burst regulation and
shed light on the simultaneous optimization of gene expression level and noise in
evolution.

Introduction

Gene expression fluctuates among isogenic cells under identical conditions, which is fre-
quently referred to as gene expression noise or cell-to-cell expression variability [1-3]. Noise
can be decomposed into intrinsic noise and extrinsic noise, according to its origins. The inher-
ent stochasticity of biochemical reactions (for example, collision between transcription factors
and promoters) and the chromatin transition between on and off states together result in
intrinsic noise [4]. Intrinsic noise can be amplified in the gene regulatory network, leading to
varying concentrations of gene expression machinery (for example, polymerase II and ribo-
somes) among isogenic cells, which reinforces the cell-to-cell variability in gene expression
and forms the basis of extrinsic noise.

Similar to expression level, expression noise is of central importance in growth, develop-
ment, and responding to environmental fluctuations [1-3,5-12]. Thus, it is subject to natural
selection and fine-tuned according to the gene function [7,8,10,13]. For instance, essential
genes and genes encoding protein complex subunits, the expression variation of which is pre-
dicted to reduce fitness of the organism and thus collectively termed as dosage sensitive genes,
often exhibit low expression noise [7,11,13]. By contrast, genes responding to environmental
fluctuations are often associated with high expression noise, which could be a product of posi-
tive selection due to immediate or long-term benefits on fitness [6,10]. To summarize, expres-
sion level and noise are two facets of gene expression, both of which are subject to natural
selection.

However, a strong negative correlation between expression level and noise has been
observed in bacteria, yeast, and mammals [1,5,11,14-16]. For example, in Saccharomyces cere-
visiae, Newman et al took advantage of the green fluorescence protein (GFP) collection in
which each strain has a GFP fused to the C terminus of an endogenous protein, measured sin-
gle cell protein levels in the cell population of each strain by fluorescence-activated cell scan-
ning (FACS), and calculated expression level and noise for ~2000 genes. A strong negative
correlation between expression level and noise was reported [11]. This negative correlation
manifests as a potential constraint for simultaneous optimization of expression level and noise
[17].
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In yeast, a number of cis- acting elements have been suggested to regulate noise indepen-
dent of expression level. For example, TATA-box containing genes have higher noise than
TATA-less genes after controlling for expression level, suggesting its potential role in regulat-
ing gene expression noise [3,6,11,15,18]. Further, mutations in TATA-box result in marked
decrease of both expression level and expression noise, suggesting the co-occurrence of high
expression level and high noise enabled by TATA-box [14]. Another element is the sequence
that determines the nucleosome occupancy around the transcriptional starting site (TSS). Occu-
pied proximal-nucleosome (OPN) genes tend to have higher noise, while depleted proximal-
nucleosome (DPN) genes tend to have lower noise, even though they display no significant dif-
ference in expression level [11,17,19]. In fact, adding nucleosome-disfavoring sequences and
strengthening transcription factor binding sites exhibit different impacts on expression noise,
even though they both elevate expression level [18]. Besides, a recent study shows that adaptive
changes in the expression mean and noise of a gene with autoregulation occurred during the
long-term evolution of yeast, suggesting that feedback is an alternative mechanism to decouple
gene expression mean and noise [20].

In addition, epigenetic modification, which is closely associated with chromatin remodeling,
has been suggested to play a role in regulating gene expression noise [21-26]. For example, Wein-
berger et al discovered that two histone deacetylation complexes, Set3 and Rpd3(L)C, play different
roles in regulating gene expression noise although both repress expression level [27], implicating
the potentially sophisticated regulation of transcription by histone modifications. However, the
genomic landscape of all major histone modifications’ impacts on expression noise is yet to be
reported. Here, we systematically investigated gene expression noise and discovered that histone
modifications are associated with independent regulation of expression level and noise.

Results

Expression level and noise are negatively correlated in human
embryonic cells

Although gene expression noise has been extensively studied in single-celled organisms
[1,5,11,14,15,28], noise in mammals, especially in human, has only been rarely addressed,
either genome-wide [16,29] or on a small scale [30-32]. Single-cell nRNA-seq was performed
in human preimplantation embryos [33], which provides us with the opportunity to investi-
gate gene expression noise in human. Here, the expression noise of a gene is defined as the
coefficient of variation (CV, o/u) of transcript concentrations among isogenic cells. We chose
to use the data from 8-cell stage embryos for two reasons. First, the total number of single cells
at this stage (20 cells from 3 embryos) is larger than that at 2- and 4-cell stages (6 and 12 cells,
respectively). Second, it’s suggested that embryonic differentiation has not started yet at 8-cell
stage [34]. To minimize the impact of sampling error during library preparation, which is
larger for lowly expressed genes [35], we focused on the 7741 genes with at least one sequenc-
ing read detected in all 20 cells. With these data, we first performed unsupervised hierarchical
clustering analysis, and found that cells from the same embryo do not always cluster together
(Fig 1A), suggesting that gene expression pattern in early embryos may not be fully deter-
mined by embryo identities. Consistently, the relatively long external branches compared to
internal branches (Fig 1A) indicate that these cells show unique gene expression patterns that
are largely independent of their embryo identities. Nevertheless, to fully exclude the embryo
effect in estimating expression noise, we subtracted the average expression of a gene in cells of
the same embryo from its expression when calculating gene expression noise (Fig 1A). Consis-
tent with previous findings in yeast [4,11,14,15] and in a mouse cell line[36], we observed a
strong negative correlation between expression level and noise in human embryonic cells

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005585 June 30, 2017 3/27


https://doi.org/10.1371/journal.pcbi.1005585

.@' PLOS COMPUTATIONAL
~Z) ’ BIOLOGY Histone-modification-associated expression noise regulation

A 3
1_| 1
EOMRE

- j=1i=1
1 30

2

7= N—3ZZ(’CU— %)
j=1i=1
TR 2223 cv=2
| | | | | i

Embryo 1 Embryo 2 Embryo 3

KEGG pathways

B a Energy generation
Group ®1 ®2 @3 4 Amino acid metabolism
S , r=-0.66 Translation
o Autophagy
g 0 Transcription
_g RNA degradation
£-2 Sl
D
o

-5 0 5 10

log, (Expression level)
Fig 1. Functional enrichment among genes with different expression level and noise. A, Left panel:
Unsupervised hierarchical clustering of the single-cell transcriptomes of 20 cells. 7741 genes with at least one
sequencing read detected in all 20 cells were used for the analysis. Right panel: The formulae used to calculate
expression level (u) and noise (CV). B, Left panel: Expression noise is negatively correlated with expression level in
human embryonic cells (r=-0.66, P< 1x10™'%, N= 7741, Pearson’s correlation). Genes were further divided into 4
groups by the major axis and minor axis. Grey line indicates the estimated technical noise under given expression
levels. Right panel: Enriched KEGG pathways in each group of genes.

https://doi.org/10.1371/journal.pchi.1005585.9001

(Fig 1B, r=-0.66, P < 1x10™'%°, N = 7741, Pearson’s correlation). Note that for most genes,
the noise estimated from single-cell mRNA-seq data is higher than technical noise (indicated
by the grey line in Fig 1B), suggesting that technical noise is not the main source of the
observed correlation above.

It is worth noting that the observed correlation between expression level and noise is poten-
tially a constraint that prevents simultaneous optimization of both. Nevertheless, we observed
that many genes, low-expression-low-noise and high-expression-high-noise genes of particu-
lar interest, deviated from the regression line in the expression level-noise correlation (Fig 1B).
To examine whether this is related to biological functions, we divided genes into four groups
based on their expression level and noise, and found that genes in these groups are enriched in
various biological pathways (Fig 1B and S1 Table). More importantly, an inspection of these
pathways reveals that the observations are consistent with the direction of natural selection on
expression level and noise. For instance, genes in signaling transduction pathways, which gen-
erally function through the accurate expression of minute amounts of specific products, are
enriched in the-low-expression-low-noise group (Group 4, Fig 1B). On the contrary, genes in
the pathways of energy generation, amino acid metabolism, and autophagy, which benefit the
organism by sensing and responding to environmental fluctuations, usually demand both high
expression and high noise [6,10,37]. Consistently, they are enriched in the high-expression-
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high-noise group (Group 1, Fig 1B). We further defined genes with significant deviation as
those deviated from the 95% confidence intervals of the major axis and minor axis, and reana-
lyzed the enriched pathways in 4 groups of genes, which generated similar results (S2 Table).
More generally, we calculated the ratio between the numbers of essential and nonessential
genes in each group, and found that essential genes are significantly enriched in the high-
expression-low-noise group (Group 2, S1A Fig). Similar result was obtained for genes encod-
ing protein complex subunits (Group 2, S1B Fig). We further verified that the observed pattern
is not an artifact of varying mRNA decay rates among human genes, because mRNA decay
rate [38]is only weakly correlated with expression level and noise (S2 Fig). Taken together, we
found that regardless of the strong correlation between expression level and noise, the decou-
pling of them is prevalent in human embryonic cells.

Decoupling between gene expression level and noise is potentially
through separate modulation of transcriptional burst frequency and burst
size by histone modifications

We next turned to the transcriptional process for a molecular interpretation of the decoupling.
It is generally accepted that eukaryotes, the DNA of which is wrapped around histones forming
nucleosomes, mainly adopt a burst-like transcription process [2-4,9,14,17,29,39], due to the
chromatin remodeling mediated promoter on-and-off transitions (Fig 2A). It was previously
observed that a large fraction of genes in human adopt the burst-like expression mode [29,40].
In this prevailing “burst model”, when the promoter is “on”, a number of mRNA are tran-
scribed, which is called a burst event. The frequency of such burst events is defined as burst fre-
quency and the average number of mRNA molecules made per event is defined as burst size.
Therefore, expression level changes with both burst frequency and burst size, while expression
noise changes mainly with burst frequency (Fig 2B & S3 Fig) [14,17]. Thus, if expression level
is predominantly regulated by burst size at the genomic scale, the slope of the regression line
between expression level (4) and noise (standard deviation divided by mean, CV, o/y) should
be approximately 0 (Fig 2B). By contrast, if expression level is predominantly regulated by
burst frequency, the slope should be approximately -0.5, because CV is inversely proportional
to the square root of mean in a Poisson process (Fig 2B). In Fig 2B, the slope falls between 0
and -0.5, suggesting that both burst size and burst frequency are modulated across the human
genome. Meanwhile, deviation from the regression line suggests that the relative contributions
of burst frequency and burst size vary among genes. Specifically, genes above the regression
line have relatively larger burst size while those under the line have relatively larger burst fre-
quency, given similar expression levels. For instance, genes in Groups 1 and 3 have relatively
larger burst size but smaller burst frequency than genes in Groups 2 and 4, respectively (Fig
1B). Based on this, we hypothesized that the decoupling of expression level and noise is
enabled by the separate modulation of burst frequency and size.

Therefore, we estimated burst size and burst frequency of transcription for each gene from
the single-cell nRNA-seq data [33] following previous studies [29,41]. mRNA level measured
by mRNA-seq is proportional but not necessarily equal to the mRNA number of a gene in a
cell, due to the amplification during mRNA-seq library preparation and high throughput
sequencing. Because this amplification influences the estimation of the Fano factor and thus
burst size, we first calibrated the mRNA number of each gene in a cell by the total number of
mRNA in a typical mammalian cell (see Methods and Materials for details) [42]. We then esti-
mated burst size with the equation burst size = 0°/u -1, in which 0°/y is the Fano factor. We fur-
ther calculated burst frequency by calculating the ratio between the mRNA number of a gene
in a cell and the estimated burst size (see Methods and Materials).
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Fig 2. Separate association with burst frequency and size among histone modifications. A, The burst-like gene expression model. B, Similar to
Fig 1B, expression level and noise of each gene in the human genome were plotted, where each dot represents one gene. Burst-size-dominant genes
are above the major axis, while burst-frequency-dominant genes are below the major axis. C, Left panel: Correlations between the intensity of each
histone modification and burst frequency and burst size (rsr and rgs, respectively) were shown, as well as rgg and rgs for the status of TATA box and
nucleosome occupancy. Right panel: Correlations between the intensity of H3K4me3/H3K79me2 and burst size/frequency, respectively, as an
illustration of the correlation calculation. Genes were divided into 200 equal-sized bins (bins with equal number of genes) based on their H3K4me3 or
H3K79me3 intensity. In each bin of genes, the mean and standard error of H3K4me3 (or H3K79me2) intensity and expression size/frequency were
calculated. In the last several bins, the variation of H3K4me3 (or H3K79me?2) intensity is relatively larger, so the error bars are broader. Correlation
coefficients were calculated with the raw data (N = 3350). D, The difference of the absolute values of rg¢ and rgs. Permutation test was used to
determine the significance of difference between rgg and rgs. N=3350. *** P <0.001; **, P<0.01; *, P<0.05. E, Average distributions of 8 histone
modifications in human embryonic cells, aligned by TSS. Promoter-localized and gene-body-localized histone modifications are marked in cyan and
coral, respectively.

https://doi.org/10.1371/journal.pcbi.1005585.g002

Epigenetic modification, especially histone modification, has been reported to play vital
roles in regulating expression noise [27]. To systematically examine the roles histone modifica-
tions play in transcriptional regulation, we first retrieved the genomic distribution data of all

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005585 June 30, 2017 6/27


https://doi.org/10.1371/journal.pcbi.1005585.g002
https://doi.org/10.1371/journal.pcbi.1005585

®'PLOS

COMPUTATIONAL

BIOLOGY

Histone-modification-associated expression noise regulation

the major euchromatic histone modifications, H3K4mel, H3K4me2, H3K4me3, H3K%ac, and
H3K27ac, H3K36me3, H3K79me2, and H4K20mel, which were obtained from the chromatin
immunoprecipitation sequencing experiments (ChIP-seq) conducted in human embryonic
stem cells (hESC), from the ENCODE project [43]. Specifically, we defined 2000 base pairs
upstream of TSS to transcription end site (TES) as the range of a gene and obtained the called
ChIP-seq peaks for each histone mark in this range. In this study, the strength of a histone
modification on a gene was defined as the average intensity of this histone mark on the gene,
which was calculated as the ratio between the total intensity (total “height” of all peaks) of a
histone mark on a gene and the range of the gene (see Methods and Materials for details).

We calculated the Pearson’s correlation between the intensity of each histone modification
and transcriptional burst frequency/size. Surprisingly, we found that these histone modifica-
tions can be divided into two distinct groups based on the correlations with burst frequency
and size. Specifically, three histone modifications (H3K36me3, H3K79me2, and H4K20mel)
have significantly stronger correlations with burst frequency (rpz) than with burst size (rps),
while other histone modifications in general exhibit little differences between rgr and g (Fig
2C and 2D, significance determined by permutation test). Importantly, this distinction coin-
cides with that according to the localization of histone modifications (Fig 2E). That is, gene-
body-localized histone modifications exhibit larger rr, while promoter-localized ones (includ-
ing the enhancer-localized marker H3K4mel) often show similar rzr and rps. It is important
to note that mRNA decay rate was not included in the estimation of burst parameters here,
due to the lack of such data in human embryonic cells. Therefore, we used the approximation
that the mRNA degradation rate is identical among transcripts and set this rate to 1 min™".
Nevertheless, when we used the mRNA decay rate obtained from human lymphoblastoid cell
lines as a substitute [38], the observation in Fig 2 persisted (54 Fig).

Since expression level is jointly determined by burst frequency and burst size, while expres-
sion noise is mainly determined by burst frequency, we predict that promoter-localized his-
tone modifications are more strongly associated with expression level (|fcan| > |fnoise|) while
gene-body-localized ones are more strongly associated with expression noise (|7noise| > |
Tmean|)> Wwhich was indeed observed in 2-cell, 4-cell, and 8-cell embryos (Fig 3A). This suggests
that the independent regulation of expression level and noise may be enabled through separate
modulation of burst size and burst frequency by histone modifications. As an example, the
low-noise gene UBE2EI is intensively modified by the gene-body-localized histone mark
H3K79me2 but only sparsely modified by the promoter-localized histone mark H3K4me3,
while the high-noise gene FBXO8 displays the opposite pattern (Fig 3B and 3C).

It is worth noting that expression level and expression noise were estimated in embryonic
cells whereas histone modification data are from hESC, due to the lack of such data in human
embryonic cells. To test whether this can lead to artifacts in our analysis, we further examined
histone modification conservation between two substantially different cell types, hESC and
GM12878 (a lymphoblastoid cell line), in ENCODE. We found that the intensity of each his-
tone mark is highly correlated between these two cell types (Spearman’s correlation coefficient
p ranges from 0.46 to 0.83, S5 Fig), suggesting that histone modification state may be largely
similar across cell types. More importantly, we calculated correlation between the intensities of
histone modifications in GM 12878 and the expression level (noise) in cells from the 8-cell
stage embryos. The pattern observed in Fig 3 is largely unchanged (S6 Fig), suggesting that our
observation is not sensitive to the cell type in which histone modification was quantified.

To summarize, histone modifications in human embryonic cells can be divided into two
distinct groups based on their associations with burst frequency and size. Although the impact
of individual histone modification seems modest, the combined effect of multiple markers on
the same gene could be strong. It is worth noting that the association between gene-body-
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Fig 3. Decoupling of expression level and noise enabled by histone modifications in human
embryonic cells. A, The difference of the absolute values of f,oise @aNd fyean in 2-, 4-, and 8-cell stages of
human preimplantation embryos. Permutation test was used to determine the significance of difference
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gene encoding F-box protein 8 (FBXO8) is intensively marked by H3K4me3 in promoter and weakly marked
by H3K79me2 in gene body, while the gene encoding ubiquitin-conjugating enzyme E2E 1 (UBE2E 1) shows
an opposite pattern. The region of 2000bp upstream of TSS is shown as the promoter and the region between
TSS and TES is shown as the gene body. C, The distributions of expression levels of FBXO8and UBE2ET in
20 cells are shown, respectively. Smoothed density estimates were displayed.

https://doi.org/10.1371/journal.pcbi.1005585.9003

localized histone markers and burst frequency is not likely the consequence of transcriptional
elongation mediated by these markers [44-46], because transcriptional elongation is unlikely
to determine transcriptional burst frequency (but see [22]).
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Histone modification is associated with the decoupling between gene
expression level and noise in yeast

The budding yeast Saccharomyces cerevisiae has been frequently used to study gene expression
noise [2,5,6,8,11,14,15]. With the yeast GFP collection in which the coding sequence of GFP is
fused to the C-terminus of an endogenous gene in each strain, Newman et al (2006) measured
single-cell fluorescence of ~2000 strains with FACS [11]. With these data, we next investigated
the association of histone modifications [47] with expression level and noise in yeast. We cal-
culated burst frequency and burst size of these genes and calculated correlation coeffi-
cients between them and the intensity of each histone modification. Consistent with the
tindings in human embryonic cells, we found that 75y is significantly larger than rpg for the
gene-body-localized histone modifications, such as H3K79me3 (rzr = 0.26, rzs = 0.03, per-
mutation test P value < 0.001, Fig 4A and 4B), while promoter-localized histone modifica-
tions tend to have similar rpg and rpr. Consistent with this, genes with high H3K79me3
intensities have a steeper slope than those with low H3K79me3 intensities (Fig 4C and 4D,
linear regression P = 3.5x107'%, df = 2163), which indicates that burst frequency is modu-
lated to a larger extent among genes with high H3K79me3 intensities, suggesting the role
of H3K79me3 in preferential modulation of burst frequency. The consistent pattern in
multiple human embryonic stages (Fig 3A), in yeast (Fig 4), and in mouse embryonic stem
cells (see below) suggests that the role of histone modifications in decoupling expression
level and noise is evolutionarily conserved.

Since TATA box and nucleosome occupancy are also suggested to play a role in the decou-
pling of expression level and noise in yeast [3,6,11,15,18,19], we calculated partial correlations
between H3K79me3 intensity and gene expression noise controlling for these two factors. It
turns out that the correlation coefficients stay virtually unchanged (Fig 4A and 4B), suggesting
that H3K79me3 is associated with noise through a TATA or nucleosome occupancy indepen-
dent mechanism.

H3K79 methylation plays a causal role in repressing gene expression
noise in yeast

Our observations so far are mainly from correlation analyses. We next designed experiments
to examine the causality between histone modifications and expression level/noise. Here, we
used H3K79 methylation as an example, because it has only one “writer” (DOT1, a non-essen-
tial gene) in yeast [46], which makes the removal of H3K79 methylation more feasible. Specifi-
cally, we constructed a homozygous DOTI knockout strain and confirmed the absence of
H3K79 methylation with western blot (Fig 5A). A pseudo gene (HO) homozygous knockout
strain was similarly constructed as a negative control. To examine whether intrinsic noise level
is elevated in the DOT1 knockout strain, a two-color system was constructed following previ-
ous studies [1,3], in which GFP and a red fluorescent protein gene (dTomato) were respectively
fused to two alleles of the same endogenous gene (Fig 5B). Since two fluorescent proteins are
expressed from the same promoter in the same cellular environment, the fluorescence differ-
ence between them is only attributable to intrinsic noise. We first examined intrinsic noise of
TEF1I, which is reported to be extensively modified by H3K79 methylation on its gene body
[47], and observed that the fluorescence difference between GFP and dTomoto is larger in
DOT1 knockout strain (Fig 5B), suggesting that removal of H3K79 methylation elevates the
intrinsic noise of TEFI.

To further quantify intrinsic noise, we randomly chose 6 additional genes with different
H3K79 methylation intensities in wild-type cells, as reporter genes (S3 Table), and measured
their fluorescence intensities of GFP and dTomoto with FACS (Fig 5C). We calculated
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https://doi.org/10.1371/journal.pcbi.1005585.9004

intrinsic noise in DOT1 and HO knockout strains following previous studies [1,3], and found
that DOT1 deletion indeed elevates expression noise, especially for highly expressed genes
(SSBI and TEFI, Fig 5D). Importantly, the slope difference between regression lines in HO
and DOT1 knockout strains (Fig 5D) is consistent with that among genes with high and low
H3K79me3 intensities (Fig 4D). In further support of our model, both SSBI and TEFI exhibit
lower burst frequencies in DOT1 deletion strains (Fig 5E). These observations are consistent
with a recent genome-scale study about the position effects on gene expression noise [25]. In
that study, Chen and Zhang reported that genes inserted into genomic regions with high
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H3K79me3 tended to have lower expression noise in yeast. To summarize, H3K79 methylation
plays a causal role in repressing gene expression noise, which supports our hypothesis that
independent regulation of expression level and noise is enabled by histone modifications.

Unexpectedly, we also observed that expression level virtually does not change upon DOTI
deletion, potentially due to some compensatory change of burst size accompanying the decrease
of burst frequency. Alternatively, the compensation may occur at the post-transcriptional level.
For example, protein degradation rate may change upon dosage imbalance among genes [48],
so the altered protein degradation rate could lead to the compensation of protein concentration
in DOT1 deletion strains. Importantly, the observation of compensation in our experiment is
consistent with the evolutionary change of gene expression between human and mouse (see
Discussion).

Histone-modification-associated independent regulation of expression
level and noise

Genes with divergent functions have unique combinations of expression level and noise (Fig
1B). Are such unique combinations enabled by the histone coding strategy described above?
To address this question, we first examined the enrichment of histone modifications in each
group of genes defined in Fig 1B. Specifically, for each histone modification, we classified
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genes into high-intensity ones and low-intensity ones with the median, and calculated the
ratio between the numbers of them in each group, which reflects the usage preference of this
histone modification among genes in the group. We found that genes with both high expres-
sion level and high noise (Group 1) are preferentially modified by promoter-localized histone
markers, while genes with high expression level and low noise (Group 2) are preferentially
modified by gene-body-localized ones in human (Fig 6A). We further illustrated this point
with two pathways, autophagy pathway in Group 1 and Wnt signaling pathway in Group 4.
Genes in autophagy pathway respond to intracellular and extracellular stimuli, and thus, are
predicted to have higher noise. Indeed, we found that they are preferentially modified by the
promoter-localized histone marker H3K4me3 (Fig 6B). By contrast, genes in Wnt signaling
pathway require low noise to ensure the accurate expression of minute amounts of their prod-
ucts, thus guaranteeing the fidelity in signaling transduction. Consistently, these genes are
preferentially modified by the gene-body-localized histone marker H3K79me?2 (Fig 6C). Addi-
tional examples (oxidative phosphorylation signaling pathway in Groupl and Jak-STAT sig-
naling pathway in Group4) are shown in S7 Fig. We then performed a similar enrichment
analysis in yeast and observed virtually the same pattern as in human embryonic cells (S8 Fig).
Interestingly, H3K36me3 is enriched among Group 4 genes but not Group 2 genes, suggesting
that H3K36me3 may play different roles in highly expressed and lowly expressed genes in
yeast.

More broadly, dosage sensitive genes (e.g., essential genes and genes encoding protein com-
plex subunits) tend to have lower noise both in yeast [7,11] and in human (S1 Fig). To test if
these genes are preferentially modified by gene-body-localized histone markers, we calculated
usage preference of each histone modification among them. To exclude the confounding effect
of expression level, we first divided genes into 10 equal-sized bins based on expression level.
Then in each bin, we divided genes into four categories based on the intensity of histone modi-
fications and dosage sensitivity. With that, we calculated an odds ratio of the contingency table
in each bin, and then calculated a common odds ratio and 95% confidence interval with Man-
tel-Haenszel procedure (Fig 7A). Consistently, we found that dosage sensitive genes indeed
prefer to use gene-body-localized histone modifications, which is reflected by the larger-than-
one common odds ratios, in both human embryonic cells and yeast (Fig 7B and 7C). All these
observations indicate that histone modifications play a vital role in independent regulation of
expression level and noise in human and yeast genomes.

Discussion

Negligible impact of cell differentiation at the 8-cell stage on noise
calculation

In this study, we calculated expression noise among cells from three 8-cell stage embryos, con-
sidering that the fraction of maternal mRNA has declined to reach parity with paternal tran-
scripts [49] and the number of single cells (20 cells) is relatively large. However, it is recently
reported that a small proportion of genes display bimodal expression at 2- or 4- cell stage in
mouse, implying potential cell differentiation in human 8-cell stage embryos [50], which may
confound the calculation of expression noise. Nevertheless, we hold that the observations in
this study are not artifacts, with the following supporting evidence. First, we calculated expres-
sion level and noise from human 2-cell stage (N = 6), 4-cell stage (N = 12), and embryonic
stem cells (N = 30), and observed “decoupling” of expression level and noise in all these sam-
ples (Fig 3A & S9A Fig). Second, we further excluded human homologs of the bimodally
expressed genes in mouse at 2- or 4-cell stage [50] and obtained essentially the same pattern
(S9B Fig). Third, similar pattern was also obtained in mouse embryonic stem cells (N = 94,
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sensitive genes are preferentially modified by gene-body-localized histone markers both in human embryonic
cells (B) and yeast (C). Error bars represent the 95% confidence intervals of the common odds ratios.

https://doi.org/10.1371/journal.pcbi.1005585.9007

S9D Fig), as well as in yeast (Figs 4 and 5). The consistent patterns observed in all these sam-
ples imply the negligible contribution of potential differentiation at the 8-cell stage to noise
calculation.

The divergence of H3K79me2 intensity between human and mouse is
associated with the divergence of gene expression noise

So far, we have observed that the intensities of gene-body-localized histone modifications are
associated with expression noise among genes (Figs 2-4). Next, we investigated whether the
same pattern could be observed among orthologous genes between human and mouse. Specifi-
cally, we asked whether the change of H3K79me?2 intensity on a gene in evolution could pre-
dict the divergence of expression noise. To this end, we obtained the H3K79me?2 intensities as
well as single-cell transcriptomes in embryonic stem cells of human and mouse [33,51]. We
observed that the change of H3K79me?2 intensity could successfully predict the divergence of
expression noise between human and mouse (S10 Fig, p = -0.12, P = 1.1x10"°), suggesting that
the modulation of H3K79me?2 intensity may play a role in the evolutionary optimization of
gene expression noise. Interestingly, we did not detect a significant correlation between the
change of H3K79me?2 intensity and the divergence of expression level (10 Fig, p = -0.03,

P =0.2). This could be due to the same compensatory mechanisms underlying the pattern
observed in our manipulative experiment in yeast (Fig 5).

Negligible function of TATA and nucleosome occupancy in regulating
expression noise in human embryonic cells

In yeast, TATA box and TSS-proximal nucleosome occupancy are associated with high noise
independent of expression level [3,6,11,14,15,18,19]. In our study, however, we found that in
human embryonic cells, neither the presence/absence of TATA-box [52,53] (p = 0.05, P = 0.10,
N =1393) nor the TSS-proximal nucleosome occupancy [54] (p = -0.003, P = 0.88, N = 3350,
Fig 2C) is correlated with burst frequency.

Consequently, the difference in expression noise between TATA-box containing and
TATA-less genes is not significant, and TSS-proximal nucleosome occupancy is only weakly
correlated with noise (S11 Fig). This result persists when we classified genes according to the
presence of a canonical TATA-box (TATAAA, S11A Fig) and calculated nucleosome occu-
pancy in various ranges (S11B Fig), which implies that alternative mechanisms should exist to
overcome the constraint between expression level and noise in human embryonic cells. We
speculated that the losses of functions of TATA-box and nucleosome occupancy in expression
noise regulation are compensated by the role of histone modifications in mammals.

Histone modifications may regulate expression noise through chromatin
accessibility

Previous studies have provided some potential mechanisms by which chromatin structure
and histone modifications regulate gene expression noise [3,6,11,15,18,19,21-26]. Weinberger
et al discovered that histone deacetylase complex Rpd3(L)C could regulate expression noise
by modulating transcription initiation [27]. Benayoun et al observed a correlation between
H3K4me3 breadth and transcriptional consistency among single cells [22]. Benayoun et al
further confirmed that the perturbation of H3K4me3 breadth led to reduced transcriptional
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consistency. They proposed that H3K4me3 breadth might regulate transcriptional consistency
through a positive feedback loop between transcription initiation and elongation. However, in
a genome-scale experiment that examined the position effects on gene expression noise in
yeast [25], Chen and Zhang completely knocked out the open reading frame of the gene at the
GFP knock-in site; they still observed that the intensity of the gene-body-localized histone
modification H3K79me3 was associated with the expression noise of GFP. This observation
suggests the presence of mechanisms in addition to the positive feedback loop between tran-
scription initiation and elongation. In yeast, TSS-proximal nucleosome occupancy regulates
the accessibility of the promoter, which influences burst frequency and expression noise
[3,6,11,15,17-19]. Because H3K79 methylation regulates the switch between heterochromatin
and euchromatin [46], gene-body-localized histone modifications may regulate the accessibil-
ity of chromatin in a broader region so that genes localized in this region exhibit reduced gene
expression noise [25]. Consistent with this mechanism, Chen and Zhang observed that essen-
tial genes tend to be localized in the chromosome regions associated with low expression noise
[25], which supported a previous hypothesis that essential genes form clusters in low noise
regions to optimize the robustness of transcription [55].

It is also worth noting that although we provided evidence that histone modification can reg-
ulate expression noise (Fig 5), we did not exclude the opposite mechanism that transcriptional
bursts may influence the intensities of gene-body-localized histone modifications. The relative
contributions of these two mechanisms to the observed correlation between gene-body-local-
ized histone modifications and expression noise deserve further investigations in the future.

Expansion of the histone code hypothesis

Histone code hypothesis states that the genetic information encoded in DNA is partly regulated
by chemical modifications to histone proteins [21]. Although histone modification is tightly
associated with transcription, it remains elusive in what specific aspects of transcription do they
play a role. For example, both of H3K4me3 and H3K79me?2 are associated with active transcrip-
tion, do they have redundant or separate functions? Here we discovered that burst frequency
and burst size, the two independent parameters of transcription, were likely modulated by two
distinct groups of histone modifications. Specifically, three gene-body-localized histone markers
(H3K36me3, H3K79me2, and H4K20mel) exhibited stronger correlations with burst frequency
than with burst size, while one promoter-localized histone marker (H3K4me2) exhibited a stron-
ger correlation with burst size than with burst frequency, in human embryonic cells (Fig 2). In
yeast, two gene-body-localized histone markers (H3K36me3 and H3K79me3) exhibited stronger
correlations with burst frequency than with burst size, while three promoter-localized histone
markers (H3K4me2, H3K9ac, and H3K14ac) exhibited stronger correlations with burst size than
with burst frequency (Fig 4). Through these histone modifications, the independent regulation
of expression level and noise is enabled. Note that additional mechanisms may also be involved
in the independent regulation of expression level and noise.

Our finding broadens our understanding of transcription regulation by histone modifica-
tions and expands the histone code hypothesis to include the regulation of gene expression
noise. Importantly, the evolutionarily conserved patterns in human, mouse, and yeast imply
that this epigenetic strategy is probably general and is adopted by many other species.

Methods and materials
Estimation of gene expression noise

Single-cell mMRNA-seq data in human preimplantation embryos were downloaded from Yan
et al (GSE36552)[33]. Specifically, the genome-wide expression profiles of 20 single cells from
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three 8-cell stage embryos were retrieved, which contain 4 cells, 8 cells and 8 cells, respectively.
Considering the larger technical error among lowly expressed genes, only genes with expres-
sion detected in all 20 cells were used. For each gene, noise (coefficient of variation, CV) was
calculated as follows:

ﬁ 215:127]:1 (‘xzj 4 zj)z

x ;12219@7
where x;; is the expression level of the gene (in the unit of Reads Per Kilobase per Million
mapped reads, RPKM) in the i cell of the j™ embryo. N (= 20) is the total number of cells, and

n; is the number of cells in the ™ embryo. Note that in order to exclude embryo effect in noise
estimation, average expression level of each embryo (X)) is used in calculating CV. Gene

Noise(CV) = (1)

expression noise at the 2/4-cell stage was calculated similarly with Eq (1).

Single-cell mMRNA-seq data of the primary outgrowth during human embryonic stem cells
(hESC) derivation (passage 0) and hESC of passage 10 were also downloaded from Yan et al
(GSE36552)[33]. Expression noise is calculated as follows:

2 ; —\2
ﬁzj':lz?:l (‘xij - xj)

12 1
N j:lZi:lxij

Eq (2) is similar to Eq (1), except that 3 embryos are replaced with 2 passages.

Single-cell transcriptomes of wild-type mouse embryonic stem cells (mESC) cultured in
ground state condition were generated by Kumar et al [51]. Expression level and noise (CV) of
94 cells were retrieved from their supplementary data.

Gene expression data at the protein level in single cells were measured with FACS in yeast
by Newman ef al [11]. Expression level and noise (CV) in YPD were retrieved. Newman et al
also calculated DM (distance of each CV to a running median of CV) to control the negative
correlation between expression level and noise[11]. In our study, we separately calculated cor-
relations between histone modifications and expression level or CV. Similar to DM, the differ-
ence between the absolute values of those two correlations reflects the deviation from the
negative correlation between expression level and CV.

Noise(CV) =

(2)

Single cell nRNA-seq data generally have relatively high technical errors, mainly from the
variation of single-molecule capture efficiency [36,56]. However, none of known errors gener-
ates bias towards certain histone modifications after controlling for gene expression level. In
yeast, single-cell protein concentrations were measured by FACS [11], which avoids the high
variation of single- molecule capture efficiency in single-cell mRNA-seq.

Total noise includes both extrinsic and intrinsic noise. It was previously reported in yeast
that after controlling for cell size, extrinsic noise is significantly reduced. The cell sizes (and
cell cycle status—another major source of extrinsic noise) are largely identical in 2-cell and
4-cell human embryos, and we still observed a similar pattern in these stages (Fig 3). These
observations suggest that extrinsic noise is unlikely a major factor influencing our major con-
clusions of this study.

Hierarchical clustering

Unsupervised hierarchical clustering analysis was performed on the single-cell transcriptome
data from 20 cells with R. To minimize the effect of experimental error in RNA-sequencing on
noise calculation, hierarchical clustering analysis was performed on 7741 genes with at least
one sequencing read detected in all 20 cells.
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Estimation of burst size and burst frequency from single-cell mMBRNA-seq
data

Based on the estimation that a typical mammalian cell contains 200,000 mRNA molecules
[42], we estimated the “amplification factor”, A, which equals RPKM,,1/200,000, where
RPKMiot is the sum of RPKM values of all genes. The number of transcripts for gene i, N;
was estimated by RPKM,/A, where RPKM,; is the RPKM value of gene i.

Based on the burst-like model in eukaryotic transcription, burst size can be estimated from
the Fano factor (0*/u), following previous studies [29],

Burst size = ¢” /u—1 (3)

where ¢” and y are the variance and mean of the estimated numbers of transcripts for each
gene among cells, respectively. And

Burst frequency = p X y_ /burst size (4)

where 7,, represents mRNA decay rate. Because mRNA decay rate is not available in human
embryonic cells, we used two approaches to approximate it. First, we used the average mRNA
decay rate estimated from 7 human B-lymphoblastoid cell lines [38]. Second, we assumed that
the variance of mRNA decay rates among transcript species was smaller than the variance of
mRNA production rates, and used Eq (5) to approximate burst frequency.

Burst frequency = u/burst size (5)

Two approaches led to similar observations (Fig 2C and S4 Fig). Genes (N = 3350) with esti-
mated burst size > 0.75 were presented in Fig 2C. The observation kept unchanged when the
cutoff of burst size was changed to > 0.5 (N = 3733, S12 Fig) or > 1.0 (N = 3057, S12 Fig).

Estimation of burst size and burst frequency from FACS data in yeast

Burst size and burst frequency in yeast were estimated with the following equations.

Burst size = ¢° [u—1 (6)

Burst frequency = i X y,/burst size (7)

where variance (¢%) and average expression level (4) were retrieved from a previous study [11]
and were normalized by the total number of proteins in a yeast cell (~5%x107) [57]. Protein deg-
radation rate (y,) was retrieved from a previous study that measured protein degradation rates
based on stable isotope labeling with amino acids in cell culture (SILAC) [58]. This degradation
rate dataset was used because protein synthesis inhibitors, which perturb normal cell status,
were not added to the culture media in this study. Note that the burst size in Eqs 6 and 7 refers
to the number of proteins synthesized in each burst (Burst size,) whereas the burst size in Eqs
3-5 refers to the number of mRNAs synthesized in each burst (Burst size,,,). They are related by
Burst size, = Burst size,, X k, | ¥,,, where k,, is the protein translation rate and y,, is the mRNA
degradation rate. The underlying assumption in Eqs 6 and 7 is that the mRNA degradation rate
is much higher than the protein degradation rate [41]. We retrieved the half-life data from pre-
vious studies [58,59], and found that this was indeed the case (the median mRNA half-life is ~ 7
minutes, while the median protein half-life is ~521 minutes).
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ChIP-seq and ChlP-chip data of histone modifications

Histone modification data in human and mouse were downloaded from the encyclopedia of
DNA elements (ENCODE) project [43], in which chromatin immunoprecipitation coupled
with high throughput sequencing (ChIP-seq) experiments were performed to measure intensi-
ties of histone modifications. All Eight ChIP-seq datasets of euchromatic histone modifications
in H1-hESC (BROADPEAK files) were retrieved, under GEO accession numbers GSM733782
(H3K4mel), GSM733670 (H3K4me2), GSM733657 (H3K4me3), GSM733773 (H3K9ac), GSM
733718 (H3K27ac), GSM733725 (H3K36me3), GSM 1003547 (H3K79me2), and GSM733687
(H4K20mel).

Five ChIP-seq datasets of euchromatic histone modifications in mouse embryonic stem cell
line ES-Bruce4 (BROADPEAK files) were retrieved, under GEO accession numbers GSM769
009 (H3K4mel), GSM769008 (H3K4me3), GSM 1000127 (H3K9ac), GSM1000099 (H3K27ac),
and GSM1000109 (H3K36me3). Because H3K79me2 data are not available in any mouse
embryonic stem cells, H3K79me?2 in cell line CH12 was used instead.

The average intensity of histone modification on each gene was calculated as follows:

1
72?:1@' X Ei (8)
LG

where Lg is gene length, which is defined as the distance between 2 kilo base pairs (kb)
upstream of TSS and TES. k is the total peak number of a specific histone modification on a
gene. L; and E; are the length and the average intensity of the /™ histone modification peak on
the gene, respectively. Since this equation could lead to inaccurate estimation of the intensities
of histone modifications that only localize in part of a gene, we also calculated the intensity of
histone markers in a modified equation:

1
72:'(:1141' X Ei (9)
LP

where gene length (L) was replaced by the length of genome that cover all peaks on a gene
(Lp). Two equations result in similar observations (Fig 3A and S9C Fig). Thus, Eq (8) was used
in the rest of this study.

Histone modification data in yeast were retrieved from a previous study [47]. In the study,
chromatin immunoprecipitation coupled with DNA microarrays (ChIP-chip experiments)
were performed for H3K9ac, H3K14ac, H3K4mel, H3K4me2, H3K4me3, H3K36me3, and
H3K79me3. Average histone modification intensity from multiple probes was calculated for
each gene.

Permutation test in detecting the difference between rg-and rgs

To determine if the difference between rzr and rgs is significant, we performed permutation by
shuffling genes for 1000 times, obtained 1000 rpr and rps, and then calculated two-tailed P values.

TATA-box and nucleosome occupancy

TATA-box classification information in human was downloaded from Jin et al [52] and Yang
et al [53]. In Jin et al, promoters were further classified into two categories, based on the pres-
ence of the canonical TATA-box (TATATAA).

Nucleosome protected DNA sequences in human were retrieved from Gaftney et al [54],
where high throughput sequencing data were generated from micrococcal nuclease-digested
chromatin (MNase-seq). This study contains the highest-resolution map of nucleosome
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occupancy to date in human. Nucleosome occupancy was calculated in the region between
250/200/150/100 base pairs (bp) upstream of the transcriptional starting site (TSS):

Nucleosome 0ccupancy, o, iengn = S reson length (10)
where x; is the number of reads whose midpoints are i bases upstream of TSS.
TATA box-containing genes in yeast were identified by Basehoar et al [60]. Genes with
occupied proximal-nucleosome (OPN) and depleted proximal-nucleosome (DPN) were iden-
tified from the promoter nucleosome occupancy data in yeast [61] by Tirosh and Barkai [19].

Essential genes and genes encoding protein complex subunits

Human orthologs of mouse essential genes were identified by Georgi et al [62], and were
defined as essential genes in human in our study. Genes encoding protein complex subunits
were retrieved from CORUM (http://mips.helmholtz-muenchen.de/genre/proj/corum) and
Havugimana et al [63].

Estimation of technical noise in human embryonic cells

Assuming that technical-error-derived mRNA molecule number follows a Poisson distribu-
tion, we can deduce that the line corresponding to technical noise has a slope of -0.5 and an
intercept of 1/2xlog,(A), or 0.73 (Fig 1B), where A is the amplification factor estimated above.
Considering that human embryonic cells are larger than average human cells and thus have
more mRNA molecules than 200,000, the actual technical noise should be lower than esti-
mated here.

KEGG enrichment analysis

GOstats [64] was used to calculate the KEGG (Kyoto Encyclopedia of Genes and Genomes)
pathways that are enriched in each of the 4 groups defined in Fig 1B. The background gene set
is all genes in the other three groups.

Calculation of relative H3K79me2/H3K4me3 intensity ratio in Fig 6B
and 6C

For each gene in a pathway, we calculated the average H3K79me2 and H3K4me3 intensity as
previously described, and then calculated the intensity ratio between them. As a control, for each
gene in autophagy or oxidative phosphorylation signaling pathway (Group 1), we identified 100
genes with similar expression levels from Group 2, calculated the H3K79me2/H3K4me3 inten-
sity ratio for each of them, and get the median ratio of these 100 genes. Finally, the intensity ratio
of each gene in autophagy or oxidative phosphorylation signaling pathway was divided by the
median ratio of these 100 control genes. Relative intensity ratios in Wnt signaling pathway or
Jak-STAT signaling pathway (Group 4) were calculated with the same method, only that the con-
trol genes were identified from Group 3.

Construction of yeast strains

Yeast strains dot1A40 and hoA0 were constructed by PCR-mediated gene disruption with an
auxotrophic marker gene URA3. Briefly, URA3 sequence was PCR amplified from plasmid
pRS416, and the amplicon was transformed into haploid yeast strains BY4741 (MATa his3A1
leu2A0 met15A0 ura3A0) and BY4742 (MATa his3A1 leu2A0 lys2A0 ura3A0), respectively.
Yeast cells were selected on synthetic complete medium with uracil dropped-off (SC-uracil);
genomic DNA was extracted from colonies and PCR was performed to verify successful gene
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deletion. HO is a site-specific endonuclease required for homothallic switching, and is non-
functional in strain s288c¢ [65]. Thus, ho:: URA3 was used here to control the potential noise
effect of the auxotrophic marker URA3[66] in dot1:URA3. The DNA oligos used in this study
are listed in S3 Table.

To estimate protein expression noise in dot1A0 and hoA0 strains, seven genes with high-
intensity H3K79 methylation[47] and average protein level larger than 1000 (arbitrary unit) in
Newman et al [11] were randomly chosen as reporters (S3 Table). Lowly expressed genes were
excluded to ensure accuracy in quantifying florescence intensity. A series of GFP strains were
generated on the background of BY4741 ho::URA3 and BY4741 dot1::URA3; in each of them,
GFP was fused to the C-terminus of a reporter protein, following the protocol at Yeast Resource
Center (http://depts.washington.edu/yeastrc/). In brief, GFP-KANMX6 cassette was PCR ampli-
fied from plasmid pFA6a-GFP(S65T)-KANMX6, and was transformed into BY4741 ho::URA3
and BY4741 dot1::URA3, respectively. A series of dTomato strains were generated similarly on
the background of BY4742 ho::URA3 and BY4742 dot1::URA3, respectively. dTomato sequence
and HYGMX4 were first PCR amplified from plasmids pRSET-B dTormato and pBS10, respec-
tively, and were seamlessly ligated and cloned into PUC19 by GeneArt Seamless Cloning and
Assembly Kit (Life Technology). This dTomato-HYGMZX4 cassette was used to fuse dTomato to
C-terminus of reporter proteins. Double fluorescence diploid strains with homozygous deletion
of DOT1 (MATa/MATa dotl::URA3/dot1::URA3 GeneX-GFP-KANMX6/GeneX-dTomato-
HYGMX4; GeneX is one of the reporter genes) were obtained by crossing BY4741 MATa dot1::
URA3 GeneX-GFP-KANMX6 with BY4742 MATea dot1::URA3 GeneX-dTomato-HYGMX4 on
YPD agar plate, followed by selection on YPD agar plate supplemented by G418 (AMRESCO,
200pg/ml) and hygromycin B (AMRESCO, 300pg/ml). Double fluorescence diploid strains with
homozygous deletion of HO (MATa/MATo: ho:URA3/ho::URA3 GeneX-GFP-KANMX6/GeneX -
dTomato-HYGMX4) were generated similarly.

Single cell preparation in yeast

Yeast cells were cultured in YPD liquid media (1% Yeast extract, 2% Peptone, and 2% Dex-
trose, mass/volume) and were collected at the mid-log phase. Cells were washed by 1xPBS
(137 mM NaCl, 2.7 mM KCl, 10 mM Na,HPO,, and 1.8 mM KH,PO,, pH 7.4) and were
placed on ice.

Fluorescence-activated cell scanning

The fluorescence intensities of EGFP and dTomato in single cells were measured with FAC-
SAria III cell sorter (BD Biosciences). GFP was excited by 488nm laser and was detected
through 530/30 nm emission filter; dTomato was excited by 561nm laser and was detected
through 610/20 nm emission filter. Cells containing single fluorescence protein were also pre-
pared to perform fluorescence compensation in FACS. Three biological replicates were per-
formed for each sample.

Cells were gated by FSC-A, SSC-A, and FSC-W/FSC-H ratio to exclude cells with extraordi-
nary size or complexity, as well as doublets and cell bulks. Then cells with both green and red
fluorescence were identified, and were used for subsequent analysis. About 40,000 double-
fluorescence events were recorded in each replicate.

Intrinsic noise was calculated following previous studies [1,3].

p=gr (11)
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2 o 2
Intrinsic CV?> = = — (g—r) (12)

u? 2gr

where gand r are the normalized EGFP intensity and dTomato intensity, respectively, in single
cells.

Burst frequency was estimated based on gamma distribution [67]. The intensity of EGFP
fluorescence was normalized with the dTomato intensity of the same cell and single-cell fluo-
rescence intensity of normalized EGFP was fit to a gamma distribution, in which process rate
parameter () and shape parameter (o) were estimated. Burst frequency was calculated with
the following equation.

Burst frequency = o (13)

Microscopy

Yeast cells were grown to mid-log phase and washed once by 1xPBS (pH 7.4). Fluorescent
images were acquired using confocal microscope (DIGITAL ECLIPSE C1S8i, Nikon, Japan)
equipped with 488 nm and 543 nm lasers, under an oil-immersed objective at x100
magnification.

Western blot assay

Yeast cells were cultured in YPD liquid media (1% Yeast extract, 2% Peptone, and 2% Dex-
trose, mass/volume), which were collected at log phase (50 ml, ODg¢, around 0.7), washed,
and immediately suspended in 400ul lysis buffer (50 mM HEPES-KOH, pH 7.5, 140 mM
NaCl, 1 mM EDTA, 1% Triton X-100, 0.1% sodium deoxycholate, and Protease Inhibitor
Cocktail). The suspension was mixed with glass beads, vortexed for 10 min at 4°C, and soni-
cated without beads for 50 times on ice (10-sec pulse at 195W followed by 20-sec rest). After
20-minute centrifugation at 10,000g, the supernatant was transferred to a new tube and boiled
for 5 minutes in SDS sample buffer. After centrifugation (14,000g for 5 minutes), 40yl of the
resulting lysates was subjected to western blot assay. Anti-H3K79 antibody, Anti-H3 antibody,
and Anti-GAPDH antibody were purchased from Abcam (ab3594, ab1791 and ab9484, respec-
tively). H3 and GAPDH were used as loading controls. The anti-H3K79 antibody (ab3594)
binds to all three H3K79 methylations. Primary antibodies were used at 1:8000 dilution. Horse
radish peroxidase (HRP)-conjugated secondary antibodies were purchased from Cell Signaling
Technology (Cat. # 7074, 1:5,000 dilution; # 7076, 1:10,000 dilution).

Supporting information

S1 Fig. Essential genes (A) and genes encoding protein complex subunits (B) are enriched in
the high-expression-low-noise group (group 2). Hypergeometric test was used to determine
the enrichment significances.

(EPS)

S$2 Fig. mRNA decay rate is weekly correlated with expression level (A) and noise (B) in
human embryonic cells. Spearman’s correlation coefficients and corresponding P values are
shown.

(EPS)

$3 Fig. Schematic diagram of correlations between expression level/noise and burst size/
burst frequency according to the burst-like gene expression model. Expression level is
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determined by both burst size and burst frequency (A-B), while noise is determined only by
burst frequency (C-D).
(EPS)

S4 Fig. After considering mRNA decay rate in the estimation of burst parameters, the pat-
tern in Fig 2 persisted.
(EPS)

S5 Fig. Histone modification conservation between cell lines hESC and GM12878. Average
modification intensity was calculated on each gene for each histone marker. Then genes were
divided into 10 equal-sized bins according to modification intensity. Spearman correlation
coefficients were calculated based on raw data.

(EPS)

S6 Fig. The correlations between the intensities of histone modifications in GM12878 and
the expression level (noise) in cells of the 8-cell stage embryos. The pattern observed in Fig
2 is largely unchanged.

(EPS)

S7 Fig. Genes in the oxidative phosphorylation signaling pathway have lower relative
H3K79me2/H3K4me3 intensity ratios. Genes in the Jak-STAT signaling pathway have higher
relative H3K79me2/H3K4me3 intensity ratios. Grey boxes indicate no available intensity ratio
data. Similar to Fig 6.

(EPS)

S8 Fig. Usage preference of histone modifications among genes with different expression
level and noise in yeast. A, Genes are divided by the major axis and minor axis into 4 groups
based on expression level and noise. B, Enrichment of histone modifications in 4 groups of
genes. Hypergeometric test was used to determine the enrichment significances.

(EPS)

S9 Fig. “Division of labor” among histone modifications is also observed in human embryonic
stem cells (A), after excluding human homologs of the bimodally expressed genes in mouse at
2/4-cell stage (B), when calculating histone modification intensities only in ChIP-Seq peak-
regions (C), and in mouse embryonic stem cells (D).

(EPS)

S10 Fig. The difference in the intensity of H3K79me?2 of orthologous genes between
human and mouse can predict the evolutionary divergence of expression noise but not
expression level.

(EPS)

S11 Fig. TATA box and nucleosome occupancy are not correlated with noise in human
embryo cells. A, No significant difference in noise was detected between TATA-containing
and TATA-less genes. t test was used to calculate the significance. B, No significant correla-
tions between noise and promoter nucleosome occupancy were detected in all 4 ranges.
(EPS)

S12 Fig. Different burst size cutoffs were used and the pattern observed in Fig 2 is largely
unchanged.
(EPS)

S1 Table. KEGG terms enriched in each group in Fig 1B.
(PDF)
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$2 Table. KEGG terms enriched in each group (95% confidence intervals). Similar to S1
Table, except that genes with significant deviations from the 95% confidence intervals of the
major axis and minor axis were divided into 4 groups.

(PDF)

S3 Table. Primers used in this study.
(PDF)
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